uu.seUppsala University Publications
Change search
Link to record
Permanent link

Direct link
BETA
Andersson Sundén, Erik
Alternative names
Publications (10 of 56) Show all publications
Binda, F., Ericsson, G., Conroy, S. & Andersson Sundén, E. (2017). Calculation of the profile-dependent neutron backscatter matrix for the JET neutron camera system. Paper presented at 29th Symposium on Fusion Technology (SOFT), SEP 05-09, 2016, Prague, CZECH REPUBLIC. Fusion engineering and design, 123, 865-868
Open this publication in new window or tab >>Calculation of the profile-dependent neutron backscatter matrix for the JET neutron camera system
2017 (English)In: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 123, p. 865-868Article in journal (Refereed) Published
Abstract [en]

We investigated the dependence of the backscatter component of the neutron spectrum on the emissivity profile. We did so for the JET neutron camera system, by calculating a profile-dependent backscatter matrix for each of the 19 camera channels using a MCNP model of the JET tokamak. We found that, when using a low minimum energy for the summation of the counts in the neutron pulse height spectrum, the backscatter contribution can depend significantly on the emissivity profile. The maximum variation in the backscatter level was 24% (8.0% when compared to the total emission). This effect needs to be considered when a correction for the backscatter contribution is applied to the measured profile.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE SA, 2017
Keyword
Neutron, Profile monitor, Backscatter, mcnp
National Category
Subatomic Physics
Identifiers
urn:nbn:se:uu:diva-341822 (URN)10.1016/j.fusengdes.2017.03.124 (DOI)000418992000181 ()
Conference
29th Symposium on Fusion Technology (SOFT), SEP 05-09, 2016, Prague, CZECH REPUBLIC
Available from: 2018-02-15 Created: 2018-02-15 Last updated: 2018-03-13Bibliographically approved
Tarrio, D., Prokofiev, A. V., Gustavsson, C., Jansson, K., Andersson Sundén, E., Al-Adili, A. & Pomp, S. (2017). Characterization of the Medley setup for measurements of neutron-induced fission cross sections at the GANIL-NFS facility. Paper presented at ND 2016: International Conference on Nuclear Data for Science and Technology. EPJ Web of Conferences, 146, Article ID 03026.
Open this publication in new window or tab >>Characterization of the Medley setup for measurements of neutron-induced fission cross sections at the GANIL-NFS facility
Show others...
2017 (English)In: EPJ Web of Conferences, ISSN 2101-6275, E-ISSN 2100-014X, Vol. 146, article id 03026Article in journal (Refereed) Published
Abstract [en]

Neutron-induced fission cross sections of 235U and 238U are widely used as standards for monitoring of neutron beams and fields. An absolute measurement of these cross sections at an absolute scale, i.e., versus the H(n,p) scattering cross section, is planned with the white neutron beam under construction at the Neutrons For Science (NFS) facility in GANIL. The experimental setup, based on PPACs and ΔE-ΔE-E telescopes containing Silicon and CsI(Tl) detectors, is described. The expected uncertainties are discussed.

National Category
Subatomic Physics
Identifiers
urn:nbn:se:uu:diva-338734 (URN)10.1051/epjconf/201714603026 (DOI)
Conference
ND 2016: International Conference on Nuclear Data for Science and Technology
Available from: 2018-01-12 Created: 2018-01-12 Last updated: 2018-01-17Bibliographically approved
Branger, E., Grape, S., Jacobsson, S., Jansson, P. & Andersson Sundén, E. (2017). Comparison of prediction models for Cherenkov light emissions from nuclear fuel assemblies. Journal of Instrumentation, 12, Article ID P06007.
Open this publication in new window or tab >>Comparison of prediction models for Cherenkov light emissions from nuclear fuel assemblies
Show others...
2017 (English)In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 12, article id P06007Article in journal (Refereed) Published
Abstract [en]

The Digital Cherenkov Viewing Device (DCVD) is a tool used by nuclear safeguards inspectors to verify irradiated nuclear fuel assemblies in wet storage based on the Cherenkov light produced by the assembly. Verification that no rods have been substituted in the fuel, so-called partial-defect verification, is made by comparing the intensity measured with a DCVD with a predicted intensity, based on operator fuel declaration. The prediction model currently used by inspectors is based on simulations of Cherenkov light production in a BWR 8x8 geometry. This work investigates prediction models based on simulated Cherenkov light production in a BWR 8x8 and a PWR 17x17 assembly, as well as a simplified model based on a single rod in water. Cherenkov light caused by both fission product gamma and beta decays were considered.The simulations reveal that there are systematic differences between the models, most noticeably with respect to the fuel assembly cooling time. Consequently, a prediction model that is based on another fuel assembly configuration than the fuel type being measured, will result in systematic over or underestimation of short-cooled fuel as opposed to long-cooled fuel. While a simplified model may be accurate enough for fuel assemblies with fairly homogeneous cooling times, the prediction models may differ by up to 18 \,\% for more heterogeneous fuel. Accordingly, these investigations indicate that the currently used model may need to be exchanged with a set of more detailed, fuel-type specific models, in order minimize the model dependant systematic deviations.

Keyword
Cherenkov and transition radiation; Cherenkov detectors; Search for radioactive and; fissile materials; Interaction of radiation with matter
National Category
Subatomic Physics
Research subject
Physics with specialization in Applied Nuclear Physics
Identifiers
urn:nbn:se:uu:diva-309739 (URN)10.1088/1748-0221/12/06/P06007 (DOI)000405090600007 ()
Funder
Swedish Radiation Safety Authority, SSM2012-2750Swedish National Infrastructure for Computing (SNIC), p2007011
Available from: 2016-12-07 Created: 2016-12-07 Last updated: 2018-04-19Bibliographically approved
Binda, F., Eriksson, J., Ericsson, G., Hellesen, C., Conroy, S., Nocente, M. & Andersson Sundén, E. (2017). Generation of the neutron response function of an NE213 scintillator for fusion applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 866, 222-229
Open this publication in new window or tab >>Generation of the neutron response function of an NE213 scintillator for fusion applications
Show others...
2017 (English)In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 866, p. 222-229Article in journal (Refereed) Published
Abstract [en]

In this work we present a method to evaluate the neutron response function of an NE213 liquid scintillator. This method is particularly useful when the proton light yield function of the detector has not been measured, since it is based on a proton light yield function taken from literature, MCNPX simulations, measurements of gammarays from a calibration source and measurements of neutrons from fusion experiments with ohmic plasmas. The inclusion of the latter improves the description of the proton light yield function in the energy range of interest (around 2.46 MeV). We apply this method to an NE213 detector installed at JET, inside the radiation shielding of the magnetic proton recoil (MPRu) spectrometer, and present the results from the calibration along with some examples of application of the response function to perform neutron emission spectroscopy (NES) of fusion plasmas. We also investigate how the choice of the proton light yield function affects the NES analysis, finding that the result does not change significantly. This points to the fact that the method for the evaluation of the neutron response function is robust and gives reliable results.

Keyword
NE213 scintillator, Neutron spectroscopy, Response function, Proton light yield
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:uu:diva-330537 (URN)10.1016/j.nima.2017.04.023 (DOI)000407863700029 ()
Available from: 2017-10-04 Created: 2017-10-04 Last updated: 2018-03-13Bibliographically approved
Al-Adili, A., Tarrío, D., Hambsch, F.-J., Göök, A., Jansson, K., Solders, A., . . . Pomp, S. (2017). Neutron-multiplicity experiments for enhanced fission modelling. In: EPJ Web of Conferences: . Paper presented at ND 2016: International Conference on Nuclear Data for Science and Technology : Bruges, Belgium, September 11-16, 2016. , 146, Article ID 04056.
Open this publication in new window or tab >>Neutron-multiplicity experiments for enhanced fission modelling
Show others...
2017 (English)In: EPJ Web of Conferences, 2017, Vol. 146, article id 04056Conference paper, Published paper (Refereed)
Abstract [en]

The nuclear de-excitation process of fission fragments (FF) provides fundamental information for the understanding of nuclear fission and nuclear structure in neutron-rich isotopes. The variation of the prompt-neutron multiplicity, ν(A), as a function of the incident neutron energy (En) is one of many open questions. It leads to significantly different treatments in various fission models and implies that experimental data are analyzed based on contradicting assumptions. One critical question is whether the additional excitation energy (Eexc) is manifested through an increase of ν(A) for all fragments or for the heavy ones only. A systematic investigation of ν(A) as a function of En has been initiated. Correlations between prompt-fission neutrons and fission fragments are obtained by using liquid scintillators in conjunction with a Frisch-grid ionization chamber. The proof-of-principle has been achieved on the reaction 235U(nth,f) at the Van De Graff (VdG) accelerator of the JRC-Geel using a fully digital data acquisition system. Neutrons from 252Cf(sf) were measured separately to quantify the neutron-scattering component due to surrounding shielding material and to determine the intrinsic detector efficiency. Prelimenary results on ν(A) and spectrum in correlation with FF properties are presented.

National Category
Subatomic Physics
Research subject
Applied Nuclear Physics
Identifiers
urn:nbn:se:uu:diva-339390 (URN)10.1051/epjconf/201714604056 (DOI)
Conference
ND 2016: International Conference on Nuclear Data for Science and Technology : Bruges, Belgium, September 11-16, 2016
Available from: 2018-01-18 Created: 2018-01-18 Last updated: 2018-02-22Bibliographically approved
Branger, E., Grape, S., Jacobsson, S., Jansson, P. & Andersson Sundén, E. (2017). On Cherenkov light production by irradiated nuclear fuel rods. Journal of Instrumentation, 12, Article ID T06001.
Open this publication in new window or tab >>On Cherenkov light production by irradiated nuclear fuel rods
Show others...
2017 (English)In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 12, article id T06001Article in journal (Refereed) Published
Abstract [en]

Safeguards verification of irradiated nuclear fuel assemblies in wet storage is frequently done by measuring the Cherenkov light in the surrounding water produced due to radioactive decays of fission products in the fuel. This paper accounts for the physical processes behind the Cherenkov light production caused by a single fuel rod in wet storage, and simulations are presented that investigate to what extent various properties of the rod affect the Cherenkov light production. The results show that the fuel properties has a noticeable effect on the Cherenkov light production, and thus that the prediction models for Cherenkov light production which are used in the safeguards verifications could potentially be improved by considering these properties.It is concluded that the dominating source of the Cherenkov light is gamma-ray interactions with electrons in the surrounding water. Electrons created from beta decay may also exit the fuel and produce Cherenkov light, and e.g. Y-90 was identified as a possible contributor to significant levels of the measurable Cherenkov light in long-cooled fuel. The results also show that the cylindrical, elongated fuel rod geometry results in a non-isotropic Cherenkov light production, and the light component parallel to the rod's axis exhibits a dependence on gamma-ray energy that differs from the total intensity, which is of importance since the typical safeguards measurement situation observes the vertical light component. It is also concluded that the radial distributions of the radiation sources in a fuel rod will affect the Cherenkov light production.

Keyword
Nuclear safeguards, Geant4, Cherenkov light, DCVD, Nuclear fuel rod
National Category
Subatomic Physics
Research subject
Physics with specialization in Applied Nuclear Physics
Identifiers
urn:nbn:se:uu:diva-309736 (URN)10.1088/1748-0221/12/06/T06001 (DOI)000405090900001 ()
Funder
Swedish Radiation Safety Authority, SSM2012-2750Swedish National Infrastructure for Computing (SNIC), p2007011
Available from: 2016-12-07 Created: 2016-12-07 Last updated: 2018-04-19Bibliographically approved
Litaudon, X., Abduallev, S., Abhangi, M., Abreu, P., Afzal, M., Aggarwal, K. M., . . . Zychor, I. (2017). Overview of the JET results in support to ITER. Nuclear Fusion, 57(10), Article ID 102001.
Open this publication in new window or tab >>Overview of the JET results in support to ITER
Show others...
2017 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 10, article id 102001Article in journal (Refereed) Published
Abstract [en]

The 2014-2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L-H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at beta(N) similar to 1.8 and n/n(GW) similar to 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D-T campaign and 14 MeV neutron calibration strategy are reviewed.

Place, publisher, year, edition, pages
IOP PUBLISHING LTD, 2017
Keyword
JET, plasma, fusion, ITER
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:uu:diva-340063 (URN)10.1088/1741-4326/aa5e28 (DOI)000416419100001 ()
Available from: 2018-01-25 Created: 2018-01-25 Last updated: 2018-02-21Bibliographically approved
Eriksson, J., Conroy, S., Andersson Sundén, E. & Hellesen, C. (2016). Calculating fusion neutron energy spectra from arbitrary reactant distributions. Computer Physics Communications, 199, 40-46
Open this publication in new window or tab >>Calculating fusion neutron energy spectra from arbitrary reactant distributions
2016 (English)In: Computer Physics Communications, ISSN 0010-4655, E-ISSN 1879-2944, Vol. 199, p. 40-46Article in journal (Refereed) Published
Abstract [en]

The Directional Relativistic Spectrum Simulator (DRESS) code can perform Monte-Carlo calculations of reaction product spectra from arbitrary reactant distributions, using fully relativistic kinematics. The code is set up to calculate energy spectra from neutrons and alpha particles produced in the D(d, n)3He and T(d, n)4He fusion reactions, but any two-body reaction can be simulated by including the corresponding cross section. The code has been thoroughly tested. The kinematics calculations have been benchmarked against the kinematics module of the ROOT Data Analysis Framework. Calculated neutron energy spectra have been validated against tabulated fusion reactivities and against an exact analytical expression for the thermonuclear fusion neutron spectrum, with good agreement. The DRESS code will be used as the core of a detailed synthetic diagnostic framework for neutron measurements at the JET and MAST tokamaks.

Keyword
neutron energy spectra, relativistic kinematics
National Category
Fusion, Plasma and Space Physics Subatomic Physics
Research subject
Physics with specialization in Applied Nuclear Physics
Identifiers
urn:nbn:se:uu:diva-247991 (URN)10.1016/j.cpc.2015.10.010 (DOI)000367113200006 ()
Available from: 2015-03-25 Created: 2015-03-25 Last updated: 2017-12-04Bibliographically approved
Skiba, M., Ericsson, G., Hjalmarsson, A., Hellesen, C., Conroy, S., Andersson Sundén, E. & Eriksson, J. (2016). Kinematic Background Discrimination Methods Using a Fully Digital Data Acquisition System for TOFOR. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 838, 82-88
Open this publication in new window or tab >>Kinematic Background Discrimination Methods Using a Fully Digital Data Acquisition System for TOFOR
Show others...
2016 (English)In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 838, p. 82-88Article in journal (Other academic) Published
Abstract [en]

A fully digital, prototype data acquisition system upgrade for the TOFOR neutron time-of-flight neutron spectrometer at the JET experimental fusion reactor in Culham, England, has been constructed. This upgrade, TOFu (Time-of-Flight upgrade), enables digitization of associated time and energy deposition information from the TOFOR scintillator detectors, facilitating discrimination of spectral background due to unrelated neutron events based on kinematic considerations. In this publication, a kinematic background discrimination method is presented using synthetic data and validated with experimental results. It is found that an improvement in signal-to-background ratio of 500% in certain spectral regions is possible with the new DAQ system.

Keyword
Fusion; Time-of-flight spectrometry; JET; Neutron spectrometry; TOFOR; Data acquisition
National Category
Fusion, Plasma and Space Physics
Identifiers
urn:nbn:se:uu:diva-304381 (URN)10.1016/j.nima.2016.09.030 (DOI)000386061200013 ()
Available from: 2016-10-04 Created: 2016-10-04 Last updated: 2017-11-30Bibliographically approved
Jansson, K., Gustavsson, C., Al-Adili, A., Hjalmarsson, A., Andersson Sundén, E., Prokofiev, A. V., . . . Pomp, S. (2015). Designing an upgrade of the Medley setup for light-ion production and fission cross-section measurements. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 794, 141-150
Open this publication in new window or tab >>Designing an upgrade of the Medley setup for light-ion production and fission cross-section measurements
Show others...
2015 (English)In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 794, p. 141-150Article in journal (Refereed) Published
Abstract [en]

Abstract Measurements of neutron-induced fission cross-sections and light-ion production are planned in the energy range 1-40 MeV at the upcoming Neutrons For Science (NFS) facility. In order to prepare our detector setup for the neutron beam with continuous energy spectrum, a simulation software was written using the Geant4 toolkit for both measurement situations. The neutron energy range around 20 MeV is troublesome when it comes to the cross-sections used by Geant4 since data-driven cross-sections are only available below 20 MeV but not above, where they are based on semi-empirical models. Several customisations were made to the standard classes in Geant4 in order to produce consistent results over the whole simulated energy range. Expected uncertainties are reported for both types of measurements. The simulations have shown that a simultaneous precision measurement of the three standard cross-sections H(n,n), 235U(n,f) and 238U(n,f) relative to each other is feasible using a triple layered target. As high resolution timing detectors for fission fragments we plan to use Parallel Plate Avalanche Counters (PPACs). The simulation results have put some restrictions on the design of these detectors as well as on the target design. This study suggests a fissile target no thicker than 2 µm (1.7 mg/cm2) and a PPAC foil thickness preferably less than 1 µm . We also comment on the usability of Geant4 for simulation studies of neutron reactions in this energy range.

Keyword
Neutron-induced fission, Light-ion production, Geant4, Standard cross-section, PPAC
National Category
Accelerator Physics and Instrumentation
Research subject
Physics with specialization in Applied Nuclear Physics
Identifiers
urn:nbn:se:uu:diva-255210 (URN)10.1016/j.nima.2015.05.001 (DOI)000356356100019 ()
Funder
Swedish Research Council
Available from: 2015-06-15 Created: 2015-06-15 Last updated: 2017-12-04Bibliographically approved
Organisations

Search in DiVA

Show all publications