uu.seUppsala University Publications
Change search
Link to record
Permanent link

Direct link
BETA
Alternative names
Publications (10 of 17) Show all publications
Makita, M., Vartiainen, I., Mohacsi, I., Caleman, C., Diaz, A., Jönsson, O., . . . David, C. (2019). Femtosecond phase-transition in hard x-ray excited bismuth. Scientific Reports, 9, Article ID 602.
Open this publication in new window or tab >>Femtosecond phase-transition in hard x-ray excited bismuth
Show others...
2019 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, article id 602Article in journal (Refereed) Published
Abstract [en]

The evolution of bismuth crystal structure upon excitation of its A(1g) phonon has been intensely studied with short pulse optical lasers. Here we present the first-time observation of a hard x-ray induced ultrafast phase transition in a bismuth single crystal at high intensities (similar to 10(14) W/cm(2)). The lattice evolution was followed using a recently demonstrated x-ray single-shot probing setup. The time evolution of the (111) Bragg peak intensity showed strong dependence on the excitation fluence. After exposure to a sufficiently intense x-ray pulse, the peak intensity dropped to zero within 300 fs, i.e. faster than one oscillation period of the A(1g) mode at room temperature. Our analysis indicates a nonthermal origin of a lattice disordering process, and excludes interpretations based on electron-ion equilibration process, or on thermodynamic heating process leading to plasma formation.

Place, publisher, year, edition, pages
NATURE PUBLISHING GROUP, 2019
National Category
Condensed Matter Physics Physical Chemistry
Identifiers
urn:nbn:se:uu:diva-376819 (URN)10.1038/s41598-018-36216-3 (DOI)000456554600041 ()30679456 (PubMedID)
Funder
EU, FP7, Seventh Framework Programme, 290605Swedish Research Council, 2013-3940
Available from: 2019-02-18 Created: 2019-02-18 Last updated: 2019-02-18Bibliographically approved
Caleman, C., Jönsson, O., Östlin, C. & Timneanu, N. (2019). Ultrafast dynamics of water exposed to XFEL pulses. In: Juha, L Bajt, S Guizard, S (Ed.), Optics Damage and Materials Processing by EUV/X-ray Radiation VII: . Paper presented at Conference on Optics Damage and Materials Processing by EUV/X-Ray Radiation VII, APR 01-03, 2019, Prague, CZECH REPUBLIC. SPIE - International Society for Optical Engineering, Article ID 1103507.
Open this publication in new window or tab >>Ultrafast dynamics of water exposed to XFEL pulses
2019 (English)In: Optics Damage and Materials Processing by EUV/X-ray Radiation VII / [ed] Juha, L Bajt, S Guizard, S, SPIE - International Society for Optical Engineering, 2019, article id 1103507Conference paper, Published paper (Refereed)
Abstract [en]

These proceedings investigate the ionization and temperature dynamics of water samples exposed to intense ultrashort X-ray free-electron laser pulses ranging from 10(4) - 10(7) J/cm(2), based on simulations using a non-local thermodynamic plasma code. In comparison to earlier work combining simulations and experiments, a regime where a hybrid simulations approach should be applicable is presented.

Place, publisher, year, edition, pages
SPIE - International Society for Optical Engineering, 2019
Series
Proceedings of SPIE, ISSN 0277-786X, E-ISSN 1996-756X ; 11035
Keywords
non-thermal processes, warm dense matter, ultrafast heating, X-ray lasers
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:uu:diva-396480 (URN)10.1117/12.2524199 (DOI)000489750600002 ()978-1-5106-2737-6 (ISBN)978-1-5106-2736-9 (ISBN)
Conference
Conference on Optics Damage and Materials Processing by EUV/X-Ray Radiation VII, APR 01-03, 2019, Prague, CZECH REPUBLIC
Funder
Swedish Research CouncilThe Swedish Foundation for International Cooperation in Research and Higher Education (STINT)
Available from: 2019-11-06 Created: 2019-11-06 Last updated: 2019-11-06Bibliographically approved
Jönsson, O., Östlin, C., Scott, H. A., Chapman, H., Aplin, S. J., Timneanu, N. & Caleman, C. (2018). FreeDam – A Webtool for Free-Electron Laser-Induced Damage in Femtosecond X-ray Crystallography. High Energy Density Physics, 26, 93-98
Open this publication in new window or tab >>FreeDam – A Webtool for Free-Electron Laser-Induced Damage in Femtosecond X-ray Crystallography
Show others...
2018 (English)In: High Energy Density Physics, ISSN 1574-1818, Vol. 26, p. 93-98Article in journal (Refereed) Published
Abstract [en]

Over the last decade X-ray free-electron laser (XFEL) sources have been made available to the scientific community. One of the most successful uses of these new machines has been protein crystallography. When samples are exposed to the intense short X-ray pulses provided by the XFELs, the sample quickly becomes highly ionized and the atomic structure is affected. Here we present a webtool dubbed FreeDam based on non-thermal plasma simulations, for estimation of radiation damage in free-electron laser experiments in terms of ionization, temperatures and atomic displacements. The aim is to make this tool easily accessible to scientists who are planning and performing experiments at XFELs.

Keywords
FreeDam, non-local thermodynamic equilibrium, x-ray free-electron laser, radiation damage, serial femtosecond x-ray crystallography, Cretin, simulation, database
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:uu:diva-329499 (URN)
Available from: 2017-09-17 Created: 2017-09-17 Last updated: 2019-04-28
Jönsson, O., Östlin, C., Scott, H. A., Chapman, H., Aplin, S. J., Timneanu, N. & Caleman, C. (2018). FreeDam: A webtool for free-electron laser-induced damage in femtosecond X-ray crystallography. HIGH ENERGY DENSITY PHYSICS, 26, 93-98
Open this publication in new window or tab >>FreeDam: A webtool for free-electron laser-induced damage in femtosecond X-ray crystallography
Show others...
2018 (English)In: HIGH ENERGY DENSITY PHYSICS, ISSN 1574-1818, Vol. 26, p. 93-98Article in journal (Refereed) Published
Abstract [en]

Over the last decade X-ray free-electron laser (XFEL) sources have been made available to the scientific community. One of the most successful uses of these new machines has been protein crystallography. When samples are exposed to the intense short X-ray pulses provided by the XFELs, the sample quickly becomes highly ionized and the atomic structure is affected. Here we present a webtool dubbed FreeDam based on non-thermal plasma simulations, for estimation of radiation damage in free-electron laser experiments in terms of ionization, temperatures and atomic displacements. The aim is to make this tool easily accessible to scientists who are planning and performing experiments at XFELs.

Keywords
Radiation damage, Non-local thermodynamic equilibrium, X-ray free-electron laser, Serial femtosecond X-ray crystallography
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:uu:diva-387471 (URN)10.1016/j.hedp.2018.02.004 (DOI)000428964400014 ()
Funder
Swedish Research Council, 20133940Swedish Foundation for Strategic Research , ICA10-0090The Swedish Foundation for International Cooperation in Research and Higher Education (STINT)Swedish National Infrastructure for Computing (SNIC), 2016-7-61
Available from: 2019-06-24 Created: 2019-06-24 Last updated: 2019-06-24Bibliographically approved
Östlin, C., Timneanu, N., Jönsson, H. O., Ekeberg, T., Martin, A. V. & Caleman, C. (2018). Reproducibility of Single Protein Explosions Induced by X-ray Lasers. Physical Chemistry, Chemical Physics - PCCP, 20(18), 12381-12389
Open this publication in new window or tab >>Reproducibility of Single Protein Explosions Induced by X-ray Lasers
Show others...
2018 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 20, no 18, p. 12381-12389Article in journal (Refereed) Published
Abstract [en]

Single particle imaging (SPI) using X-ray pulses has become increasingly attainable with the advent of high-intensity free electron lasers. Eliminating the need for crystallized samples enables structural studies of molecules previously inaccessible by conventional crystallography. While this emerging technique already demonstrates substantial promise, some obstacles need to be overcome before SPI can reach its full potential. One such problem is determining the spatial orientation of the sample at the time of X-ray interaction. Existing solutions rely on diffraction data and are computationally demanding and sensitive to noise. In this in silico study, we explore the possibility of aiding these methods by mapping the ion distribution as the sample undergoes a Coulomb explosion following the intense ionization. By detecting the ions ejected from the fragmented sample, the orientation of the original sample should be possible to determine. Knowledge of the orientation has been shown earlier to be of substantial advantage in the reconstruction of the original structure. 150 explosions of each of twelve separate systems – four polypeptides with different amounts of surface bound water – were simulated with molecular dynamics (MD) and the average angular distribution of carbon and sulfur ions was investigated independently. The results show that the explosion maps are reproducible in both cases, supporting the idea that orientation information is preserved. Additional water seems to restrict the carbon ion trajectories further through a shielding mechanism, making the maps more distinct. For sulfurs, water has no significant impact on the trajectories, likely due to their higher mass and greater ionization cross section, indicating that they could be of particular interest. Based on these findings, we conclude that explosion data can aid spatial orientation in SPI experiments and could substantially improve the capabilities of the novel technique.

Keywords
XFEL, Single-particle imaging, Coulomb explosion, ultrafast, GROMACS, simulation.
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:uu:diva-329340 (URN)10.1039/C7CP07267H (DOI)000431825300006 ()
Funder
Swedish Research Council, 2013-3940Swedish Foundation for Strategic Research Carl Tryggers foundation
Available from: 2017-09-13 Created: 2017-09-13 Last updated: 2019-04-28Bibliographically approved
Beyerlein, K., Jönsson, O., Alonso-Mori, R., Aquila, A., Bajt, S., Barty, A., . . . Caleman, C. (2018). Ultrafast non-thermal heating of water initiated by an X-ray laser. Proceedings of the National Academy of Sciences of the United States of America, 115(22), 5652-5657
Open this publication in new window or tab >>Ultrafast non-thermal heating of water initiated by an X-ray laser
Show others...
2018 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 115, no 22, p. 5652-5657Article in journal (Refereed) Published
Abstract [en]

X-ray Free-Electron Lasers have opened the door to a new era in structural biology, enabling imaging of biomolecules and dynamics that were impossible to access with conventional methods. A vast majority of imaging experiments, including Serial Femtosecond Crystallography, use a liquid jet to deliver the sample into the interaction region. We have observed structural changes in the carrying water during X-ray exposure, showing how it transforms from the liquid phase to a plasma. This ultrafast phase transition observed in water provides evidence that any biological structure exposed to these X-ray pulses is destroyed during the X-ray exposure.The bright ultrafast pulses of X-ray Free-Electron Lasers allow investigation into the structure of matter under extreme conditions. We have used single pulses to ionize and probe water as it undergoes a phase transition from liquid to plasma. We report changes in the structure of liquid water on a femtosecond time scale when irradiated by single 6.86 keV X-ray pulses of more than 106 J/cm2. These observations are supported by simulations based on molecular dynamics and plasma dynamics of a water system that is rapidly ionized and driven out of equilibrium. This exotic ionic and disordered state with the density of a liquid is suggested to be structurally different from a neutral thermally disordered state.

National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:uu:diva-294554 (URN)10.1073/pnas.1711220115 (DOI)000433283700046 ()29760050 (PubMedID)
Funder
Swedish Foundation for Strategic Research Swedish Research Council, 2013-3940The Swedish Foundation for International Cooperation in Research and Higher Education (STINT)Swedish National Infrastructure for Computing (SNIC)Carl Tryggers foundation
Note

De två första författarna delar förstaförfattarskapet

Available from: 2016-05-24 Created: 2016-05-24 Last updated: 2018-08-20Bibliographically approved
Jönsson, H. O., Caleman, C., Andreasson, J. & Timneanu, N. (2017). Hit detection in serial femtosecond crystallography using X-ray spectroscopy of plasma emission. IUCrJ, 4(6), 778-784
Open this publication in new window or tab >>Hit detection in serial femtosecond crystallography using X-ray spectroscopy of plasma emission
2017 (English)In: IUCrJ, ISSN 0972-6918, E-ISSN 2052-2525, Vol. 4, no 6, p. 778-784Article in journal (Refereed) Published
Abstract [en]

Serial femtosecond crystallography is an emerging and promising method for determining protein structures, making use of the ultrafast and bright X-ray pulses from X-ray free-electron lasers. The upcoming X-ray laser sources will produce well above 1000pulses per second and will pose a new challenge: how to quickly determine successful crystal hits and avoid a high-rate data deluge. Proposed here is a hit-finding scheme based on detecting photons from plasma emission after the sample has been intercepted by the X-ray laser. Plasma emission spectra are simulated for systems exposed to high-intensity femtosecond pulses, for both protein crystals and the liquid carrier systems that are used for sample delivery. The thermal radiation from the glowing plasma gives a strong background in the XUV region that depends on the intensity of the pulse, around the emission lines from light elements (carbon, nitrogen, oxygen). Sample hits can be reliably distinguished from the carrier liquid based on the characteristic emission lines from heavier elements present only in the sample, such as sulfur. For buffer systems with sulfur present, selenomethionine substitution is suggested, where the selenium emission lines could be used both as an indication of a hit and as an aid in phasing and structural reconstruction of the protein.

Keywords
hit detection, plasma emission spectra, serial femtosecond crystallography, protein structure
National Category
Biophysics
Research subject
Physics with specialization in Biophysics
Identifiers
urn:nbn:se:uu:diva-331934 (URN)10.1107/S2052252517014154 (DOI)000414266200011 ()29123680 (PubMedID)
Funder
Swedish Research CouncilSwedish National Infrastructure for Computing (SNIC), 2016-7-61Swedish Foundation for Strategic Research The Swedish Foundation for International Cooperation in Research and Higher Education (STINT)ÅForsk (Ångpanneföreningen's Foundation for Research and Development)
Available from: 2017-10-25 Created: 2017-10-25 Last updated: 2018-02-05Bibliographically approved
Beyerlein, K. R., Dierksmeyer, D., Mariani, V., Kuhn, M., Sarrou, I., Ottaviano, A., . . . Oberthuer, D. (2017). Mix-and-diffuse serial synchrotron crystallography. IUCrJ, 4(6), 769-777
Open this publication in new window or tab >>Mix-and-diffuse serial synchrotron crystallography
Show others...
2017 (English)In: IUCrJ, ISSN 0972-6918, E-ISSN 2052-2525, Vol. 4, no 6, p. 769-777Article in journal (Refereed) Published
Abstract [en]

Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzyme at a high level of detail. The success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.

Place, publisher, year, edition, pages
INT UNION CRYSTALLOGRAPHY, 2017
Keywords
drug discovery, protein structure, X-ray crystallography, serial crystallography, time-resolved studies, lysozyme
National Category
Materials Chemistry
Identifiers
urn:nbn:se:uu:diva-340908 (URN)10.1107/S2052252517013124 (DOI)000414266200010 ()29123679 (PubMedID)
Funder
EU, FP7, Seventh Framework Programme, ERC-614507-Kupper
Available from: 2018-02-05 Created: 2018-02-05 Last updated: 2018-02-05Bibliographically approved
Jönsson, O. (2017). Ultrafast Structural and Electron Dynamics in Soft Matter Exposed to Intense X-ray Pulses. (Doctoral dissertation). Uppsala: Acta Universitatis Upsaliensis
Open this publication in new window or tab >>Ultrafast Structural and Electron Dynamics in Soft Matter Exposed to Intense X-ray Pulses
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Investigations of soft matter using ultrashort high intensity pulses have been made possible through the advent of X-ray free-electrons lasers. The last decade has seen the development of a new type of protein crystallography where femtosecond dynamics can be studied, and single particle imaging with atomic resolution is on the horizon. The pulses are so intense that any sample quickly turns into a plasma. This thesis studies the ultrafast transition from soft matter to warm dense matter, and the implications for structural determination of proteins.                   

We use non-thermal plasma simulations to predict ultrafast structural and electron dynamics. Changes in atomic form factors due to the electronic state, and displacement as a function of temperature, are used to predict Bragg signal intensity in protein nanocrystals. The damage processes started by the pulse will gate the diffracted signal within the pulse duration, suggesting that long pulses are useful to study protein structure. This illustrates diffraction-before-destruction in crystallography.

The effect from a varying temporal photon distribution within a pulse is also investigated. A well-defined initial front determines the quality of the diffracted signal. At lower intensities, the temporal shape of the X-ray pulse will affect the overall signal strength; at high intensities the signal level will be strongly dependent on the resolution.

Water is routinely used to deliver biological samples into the X-ray beam. Structural dynamics in water exposed to intense X-rays were investigated with simulations and experiments. Using pulses of different duration, we found that non-thermal heating will affect the water structure on a time scale longer than 25 fs but shorter than 75 fs. Modeling suggests that a loss of long-range coordination of the solvation shells accounts for the observed decrease in scattering signal.

The feasibility of using X-ray emission from plasma as an indicator for hits in serial diffraction experiments is studied. Specific line emission from sulfur at high X-ray energies is suitable for distinguishing spectral features from proteins, compared to emission from delivery liquids. We find that plasma emission continues long after the femtosecond pulse has ended, suggesting that spectrum-during-destruction could reveal information complementary to diffraction.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. p. 78
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1592
Keywords
X-ray free-electron laser; Serial Femtosecond Crystallography; Radiation Damage; Plasma Simulations; Ultrafast Lasers; X-ray Imaging; Diffraction Theory; Ultrafast Phenomena; Hit Detection; Plasma Emission Spectra; Serial Femtosecond Crystallography; Protein Structure; Protein Crystallography; Metalloprotein; Non-thermal Heating; Water; Ferredoxin; NLTE Simulation; XFEL; FEL; SFX
National Category
Biophysics
Research subject
Physics with specialization in Biophysics
Identifiers
urn:nbn:se:uu:diva-331936 (URN)978-91-513-0134-1 (ISBN)
Public defence
2017-12-15, Polhemssalen, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research , ICA10-0090Swedish Research Council, 2013-3940The Swedish Foundation for International Cooperation in Research and Higher Education (STINT)
Available from: 2017-11-22 Created: 2017-10-25 Last updated: 2018-03-07
Jönsson, H. O. (2016). Femtosecond Dynamics in Water and Biological Materials with an X-Ray Laser. (Licentiate dissertation). Uppsala universitet
Open this publication in new window or tab >>Femtosecond Dynamics in Water and Biological Materials with an X-Ray Laser
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Using high intensity ultrashort pulses from X-ray free electron lasers to investigate soft matter is a recent and successful development. The last decade has seen the development of new variant of protein crystallography with femtosecond dynamics, and single particle imaging with atomic resolution is on the horizon. The work presented here is part of the effort to explain what processes influence the capability to achieve high resolution information in these techniques. Non-local thermal equilibrium plasma continuum modelling is used to predict signal changes as a function of pulse duration, shape and energy. It is found that ionization is the main contributor to radiation damage in certain photon energy and intensity ranges, and diffusion depending on heating is dominant in other scenarios. In femtosecond protein crystallography, self-gating of Bragg diffraction is predicted to quench the signal from the latest parts of an X-ray pulse. At high intensities ionization is dominant and the last part of the pulse will contain less information at low resolution. At lower intensities, displacement will dominate and high resolution information will be gated first. Temporal pulse shape is also an important factor. The difference between pulse shapes is most prominent at low photon energy in the form of a general increase or decrease in signal, but the resolution dependance is most prominent at high energies. When investigating the X-ray scattering from water a simple diffusion model can be replaced by a molecular dynamics simulation, which predicts structural changes in water on femtosecond timescales. Experiments performed at LCLS are presented that supports the simulation results on structural changes that occur in the solvent during the exposure.

Place, publisher, year, edition, pages
Uppsala universitet, 2016
National Category
Biophysics Atom and Molecular Physics and Optics
Research subject
Physics with specialization in Biophysics
Identifiers
urn:nbn:se:uu:diva-294553 (URN)
Presentation
2016-06-14, 80121, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 15:19 (English)
Opponent
Supervisors
Available from: 2016-05-27 Created: 2016-05-24 Last updated: 2016-05-27Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-2076-0918

Search in DiVA

Show all publications