uu.seUppsala University Publications
Change search
Link to record
Permanent link

Direct link
BETA
Bergfelt, Andreas
Publications (8 of 8) Show all publications
Bergfelt, A., Hernández, G., Mogensen, R., Lacey, M. J., Mindemark, J., Brandell, D. & Bowden, T. M. (2020). A Mechanical Robust yet highly Conductive Diblock Copolymer-based Solid Polymer Electrolyte for Room Temperature Structural Battery Applications. ACS Applied Polymer Materials, 2(2), 939-948
Open this publication in new window or tab >>A Mechanical Robust yet highly Conductive Diblock Copolymer-based Solid Polymer Electrolyte for Room Temperature Structural Battery Applications
Show others...
2020 (English)In: ACS Applied Polymer Materials, ISSN 2637-6105, Vol. 2, no 2, p. 939-948Article in journal (Refereed) Published
Abstract [en]

In this paper we present a solid polymer electrolyte (SPE) that uniquely combines ionic conductivity and mechanical robustness. This is achieved with a diblock copolymer poly(benzyl methacrylate)-poly(ε-caprolactone-r-trimethylene carbonate). The SPE with 16.7 wt% lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) showed the highest ionic conductivity (9.1×10−6 S cm−1 at 30 °C) and apparent transference number (T+) of 0.64 ± 0.04. Due to the employment of the benzyl methacrylate hard-block, this SPE is mechanically robust with a storage modulus (E') of 0.2 GPa below 40 °C, similar to polystyrene, thus making it a suitable material also for load-bearing constructions. The cell Li|SPE|LiFePO4 is able to cycle reliably at 30 °C for over 300 cycles. The promising mechanical properties, desired for compatibility with Li-metal, together with the fact that BCT is a highly reliable electrolyte material makes this SPE an excellent candidate for next-generation all-solid-state batteries.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2020
Keywords
block copolymer, solid polymer electrolyte, lithium-ion battery, structural battery, solid-state battery
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:uu:diva-340855 (URN)10.1021/acsapm.9b01142 (DOI)000514258700088 ()
Funder
Swedish Energy Agency, 40466-1EU, European Research Council, 771777 FUN POLYSTORE
Available from: 2018-02-04 Created: 2018-02-04 Last updated: 2020-04-02Bibliographically approved
Gao, M., Yang, Y., Bergfelt, A., Huang, L., Zheng, L. & Melander Bowden, T. (2020). Self-assembly of cholesterol end-capped polymer micelles for controlled drug delivery. Journal of Nanobiotechnology, 18, Article ID 13.
Open this publication in new window or tab >>Self-assembly of cholesterol end-capped polymer micelles for controlled drug delivery
Show others...
2020 (English)In: Journal of Nanobiotechnology, ISSN 1477-3155, E-ISSN 1477-3155, Vol. 18, article id 13Article in journal (Refereed) Published
Abstract [en]

Background: During the past few decades, drug delivery system (DDS) has attracted many interests because it could enhance the therapeutic effects of drugs and reduce their side effects. The advent of nanotechnology has promoted the development of nanosized DDSs, which could promote drug cellular uptake as well as prolong the half-life in blood circulation. Novel polymer micelles formed by self-assembly of amphiphilic polymers in aqueous solution have emerged as meaningful nanosystems for controlled drug release due to the reversible destabilization of hydrophobic domains under different conditions.

Results: The amphiphilic polymers presented here were composed of cholesterol groups end capped and poly (poly (ethylene glycol) methyl ether methacrylate) (poly (OEGMA)) as tailed segments by the synthesis of cholesterol-based initiator, followed by atom transfer radical polymerization (ATRP) with OEGMA monomer. FT-IR and NMR confirmed the successfully synthesis of products including initiator and polymers as well as the Mw of the polymers were from 33,233 to 89,088 g/mol and their corresponding PDI were from 1.25 to 1.55 by GPC. The average diameter of assembled polymer micelles was in hundreds nanometers demonstrated by DLS, AFM and SEM. The behavior of the amphiphilic polymers as micelles was investigated using pyrene probing to explore their critical micelle concentration (CMC) ranging from 2.53 x 10(-4) to 4.33 x 10(-4) mg/ml, decided by the balance between cholesterol and poly (OEGMA). Besides, the CMC of amphiphilic polymers, the quercetin (QC) feeding ratio and polarity of solvents determined the QC loading ratio maximized reaching 29.2% certified by UV spectrum, together with the corresponding size and stability changes by DLS and Zeta potential, and thermodynamic changes by TGA and DSC. More significantly, cholesterol end-capped polymer micelles were used as nanosized systems for controlled drug release, not only alleviated the cytotoxicity of QC from 8.6 to 49.9% live cells and also achieved the QC release in control under different conditions, such as the presence of cyclodextrin (CD) and change of pH in aqueous solution.

Conclusions: The results observed in this study offered a strong foundation for the design of favorable polymer micelles as nanosized systems for controlled drug release, and the molecular weight adjustable amphiphilic polymer micelles held potential for use as controlled drug release system in practical application.

Place, publisher, year, edition, pages
BMC, 2020
Keywords
Atom transfer radical polymerization, Supermolecular self-assembly, Amphiphilic polymer micelles, Critical micelle concentration, Controlled drug delivery system
National Category
Physical Chemistry Polymer Chemistry
Identifiers
urn:nbn:se:uu:diva-409660 (URN)10.1186/s12951-020-0575-y (DOI)000521249500001 ()31941501 (PubMedID)
Available from: 2020-04-29 Created: 2020-04-29 Last updated: 2020-04-29Bibliographically approved
Bergfelt, A., Mogensen, R., Lacey, M., Guiomar, H., Brandell, D. & Bowden, T. (2018). Mechanically Robust and Highly Conductive Di-Block Copolymers as Solid Polymer Electrolytes for Room Temperature Li-ion Batteries. In: : . Paper presented at 16th International Symposium on Polymer Electrolytes (ISPE-16).
Open this publication in new window or tab >>Mechanically Robust and Highly Conductive Di-Block Copolymers as Solid Polymer Electrolytes for Room Temperature Li-ion Batteries
Show others...
2018 (English)Conference paper, Poster (with or without abstract) (Other academic)
Abstract [en]

Alternative solid polymer electrolytes (SPEs) hosts to the archetype poly(ethylene oxide) are gaining attention thanks to their appealing properties, such as higher cation transport number, thermal stability and electrochemical stability [1]. In addition, high mechanical stability is required in order to integrate easy-to-use materials into flexible or ‘structural’ batteries [2, 3].

 In this work, a solid polymer electrolyte (SPE) featuring high ionic conductivity and mechanical robustness at room temperature is presented. The SPE consists of a di-block copolymer, poly(benzyl methacrylate)-poly(ε-caprolactone-r-trimethylene carbonate) (BCT), mixed with different loadings of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The highest ionic conductivity achieved for these SPEs was found with 16.7 wt% LiTFSI loading (BCT17), reaching 9.1 x 10-6 S cm-1 at 30 °C. The limited current fraction (F+) for the BCT17 electrolyte was calculated to be 0.64 with the Bruce-Vincent method. Furthermore, dynamic mechanical analysis showed a storage modulus (E’) of 0.2 GPa below 40 °C and 1 MPa above 50 °C. These results indicate that BCT with LiTFSI is a competitive electrolyte, combining high ionic conductivity and modulus at ambient temperatures.

 LiFePO4|BCT17|Li half-cells showed good cycling performance at 60 °C. At 30 °C, where the SPE possessed significantly higher modulus, decent cell performance could still be achieved after several optimization steps. These included incorporating a SPE as binder, and infiltration cast the SPE on the electrode to maximize the contact between both components, thereby improving the interfacial contact and decreasing the cell resistance and overpotential when cycling the battery device.

 References

[1] J. Mindemark, M.J. Lacey, T. Bowden, D. Brandell. Prog Polym Sci, (2018). DOI: 10.1016/j.progpolymsci.2017.12.004.

[2] J.F. Snyder, R.H. Carter, E.D. Wetzel. Chem Mater, 19 (2007) 3793-801.

[3] W.S. Young, W.F. Kuan, Thomas H. Epps. J Polym Sci, Part B: Polym Phys, 52 (2014) 1-16.

National Category
Materials Chemistry
Identifiers
urn:nbn:se:uu:diva-374680 (URN)
Conference
16th International Symposium on Polymer Electrolytes (ISPE-16)
Available from: 2019-01-22 Created: 2019-01-22 Last updated: 2019-01-22
Bergfelt, A., Lacey, M. J., Hedman, J., Sångeland, C., Brandell, D. & Bowden, T. (2018). ε-Caprolactone-based solid polymer electrolytes for lithium-ion batteries: synthesis, electrochemical characterization and mechanical stabilization by block copolymerization. RSC Advances, 8(30), 16716-16725
Open this publication in new window or tab >>ε-Caprolactone-based solid polymer electrolytes for lithium-ion batteries: synthesis, electrochemical characterization and mechanical stabilization by block copolymerization
Show others...
2018 (English)In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 8, no 30, p. 16716-16725Article in journal (Refereed) Published
Abstract [en]

In this work, three types of polymers based on epsilon-caprolactone have been synthesized: poly(epsilon-caprolactone), polystyrene-poly(epsilon-caprolactone), and polystyrene-poly(epsilon-caprolactone-r-trimethylene carbonate) (SCT), where the polystyrene block was introduced to improve the electrochemical and mechanical performance of the material. Solid polymer electrolytes (SPEs) were produced by blending the polymers with 10-40 wt% lithium bis(trifluoromethane) sulfonimide (LiTFSI). Battery devices were thereafter constructed to evaluate the cycling performance. The best performing battery half-cell utilized an SPE consisting of SCT and 17 wt% LiTFSI as both binder and electrolyte; a Li vertical bar SPE vertical bar LiFePO4 cell that cycled at 40 degrees C gave a discharge capacity of about 140 mA h g(-1) at C/5 for 100 cycles, which was superior to the other investigated electrolytes. Dynamic mechanical analysis (DMA) showed that the storage modulus E' was about 5 MPa for this electrolyte.

National Category
Polymer Chemistry
Identifiers
urn:nbn:se:uu:diva-340854 (URN)10.1039/c8ra00377g (DOI)000431814500034 ()
Funder
Swedish Energy Agency, 42031-1EU, Horizon 2020, 685716
Available from: 2018-02-04 Created: 2018-02-04 Last updated: 2018-08-27Bibliographically approved
Lacey, M., Österlund, V., Bergfelt, A., Jeschull, F., Bowden, T. & Brandell, D. (2017). A robust, water-based, functional binder framework for high energy Li-S batteries. In: : . Paper presented at Lithium Sulfur Batteries: Mechanisms, Modelling and Materials.
Open this publication in new window or tab >>A robust, water-based, functional binder framework for high energy Li-S batteries
Show others...
2017 (English)Conference paper, Oral presentation only (Other academic)
National Category
Materials Chemistry
Identifiers
urn:nbn:se:uu:diva-338014 (URN)
Conference
Lithium Sulfur Batteries: Mechanisms, Modelling and Materials
Available from: 2018-01-06 Created: 2018-01-06 Last updated: 2018-01-06
Lacey, M., Österlund, V., Bergfelt, A., Jeschull, F., Bowden, T. & Brandell, D. (2017). A Robust, Water-Based, Functional Binder Framework for High-Energy Lithium-Sulfur Batteries. ChemSusChem, 10(13), 2758-2766
Open this publication in new window or tab >>A Robust, Water-Based, Functional Binder Framework for High-Energy Lithium-Sulfur Batteries
Show others...
2017 (English)In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 10, no 13, p. 2758-2766Article in journal (Refereed) Published
Abstract [en]

We report here a water-based functional binder framework for the lithium-sulfur battery systems, based on the general combination of a polyether and an amide-containing polymer. These binders are applied to positive electrodes optimised towards high-energy electrochemical performance based only on commercially available materials. Electrodes with up to 4 mAhcm(-2) capacity and 97-98% coulombic efficiency are achievable in electrodes with a 65% total sulfur content and a poly(ethylene oxide): poly(vinylpyrrolidone) (PEO: PVP) binder system. Exchange of either binder component for a different polymer with similar functionality preserves the high capacity and coulombic efficiency. The improvement in coulombic efficiency from the inclusion of the coordinating amide group was also observed in electrodes where pyrrolidone moieties were covalently grafted to the carbon black, indicating the role of this functionality in facilitating polysulfide adsorption to the electrode surface. The mechanical properties of the electrodes appear not to significantly influence sulfur utilisation or coulombic efficiency in the short term but rather determine retention of these properties over extended cycling. These results demonstrate the robustness of this very straightforward approach, as well as the considerable scope for designing binder materials with targeted properties.

National Category
Materials Chemistry
Identifiers
urn:nbn:se:uu:diva-337672 (URN)10.1002/cssc.201700743 (DOI)000405080200009 ()28544635 (PubMedID)
Available from: 2018-01-03 Created: 2018-01-03 Last updated: 2018-02-01Bibliographically approved
Bergfelt, A., Rubatat, L., Mogensen, R., Brandell, D. & Bowden, T. (2017). d8-poly(methyl methacrylate)-poly[(oligo ethylene glycol) methyl ether methacrylate] tri-block-copolymer electrolytes: Morphology, conductivity and battery performance. Polymer, 131, 234-242
Open this publication in new window or tab >>d8-poly(methyl methacrylate)-poly[(oligo ethylene glycol) methyl ether methacrylate] tri-block-copolymer electrolytes: Morphology, conductivity and battery performance
Show others...
2017 (English)In: Polymer, ISSN 0032-3861, E-ISSN 1873-2291, Vol. 131, p. 234-242Article in journal (Refereed) Published
Abstract [en]

A series of deuterated tri-block copolymers with the general structure d(8)-PMMA-POEGMA-d(8)-PMMA, with variation in d(8)-PMMA chain length, were synthesized using sequential controlled radical polymerization (ATRP). Solid polymer electrolytes (SPEs) were produced by blending tri-block copolymers and lithium bis(trifluoro methylsulfonate) (LiTFSI). Small-angle neutron scattering (SANS) was used to study the bulk morphology of the deuterated tri-block copolymer electrolyte series at 25 degrees C, 60 degrees C and 95 degrees C. The lack of a second T-g in DSC analysis together with modelling with the random phase approximation model (RPA) confirmed that the electrolytes are in the mixed state, with negative Flory-Huggins interaction parameters. AC impedance spectroscopy was used to study the ionic conductivity of the SPE series in the temperature interval 30 degrees C-90 degrees C, and a battery device was constructed to evaluate a 25 wt% d(8)-PMMA electrolyte. The Li | SPE | LiFePO4 cell cycled at 60 degrees C, giving a discharge capacity of 120 mAh g(-1), while cyclic voltammetry showed that the SPE was stable at 60 degrees C.

National Category
Polymer Chemistry
Identifiers
urn:nbn:se:uu:diva-337667 (URN)10.1016/j.polymer.2017.10.044 (DOI)000415014300026 ()
Funder
Swedish Research Council
Available from: 2018-01-03 Created: 2018-01-03 Last updated: 2018-02-22Bibliographically approved
Bergman, M., Bergfelt, A., Sun, B., Bowden, T., Brandell, D. & Johansson, P. (2015). Graft copolymer electrolytes for high temperature Li-battery applications, using poly(methyl methacrylate) grafted poly(ethylene glycol)methyl ether methacrylate and lithium bis(trifluoromethanesulfonimide). Electrochimica Acta, 175, 96-103
Open this publication in new window or tab >>Graft copolymer electrolytes for high temperature Li-battery applications, using poly(methyl methacrylate) grafted poly(ethylene glycol)methyl ether methacrylate and lithium bis(trifluoromethanesulfonimide)
Show others...
2015 (English)In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 175, p. 96-103Article in journal (Refereed) Published
Abstract [en]

For successful hybridization of heavy vehicles, high temperature batteries might be the solution. Here, high temperature solid polymer electrolytes (SPE's) based on different ratios of poly(methyl methacrylate) (PMMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMA), with LiTFSI salt (at a fixed ether oxygen (EO):Li ratio of 20:1) have been prepared and investigated. The copolymers comprise PMMA backbones with grafted PEGMA side-chains containing 9 EO units. The SPE systems were characterized using Raman spectroscopy, broadband dielectric spectroscopy, differential scanning calorimetry, thermal gravimetric analysis, and electrochemical cycling in prototype cells, with a particular focus on the 83 wt% PEGMA system. The electrolytes have good thermal stabilities and dissociate the LiTFSI salt easily, while at the same time maintaining low glass transition temperatures (T-g's). Depending on the polymeric structure, ionic conductivities >1 mS cm(-1) at 110 degrees C are detected, thus providing ion transport properties for a broad range of electrochemical applications. Prototype Li vertical bar polymer electrolyte vertical bar LiFePO4 cells utilizing the SPE at 60 degrees C showed surprisingly low capacities (<20 mA h g(-1) LiFePO4), which could be due to poor electrode/electrolyte contacts.

Keywords
Solid polymer electrolyte, High temperature battery, Poly(methyl methacrylate), Ether oxygen, LiTFSI
National Category
Chemical Sciences
Identifiers
urn:nbn:se:uu:diva-262959 (URN)10.1016/j.electacta.2015.01.226 (DOI)000360178600014 ()
Funder
Swedish Foundation for Strategic Research Swedish Research CouncilÅForsk (Ångpanneföreningen's Foundation for Research and Development)
Available from: 2015-09-29 Created: 2015-09-23 Last updated: 2017-12-01Bibliographically approved
Organisations

Search in DiVA

Show all publications