uu.seUppsala University Publications
Change search
Link to record
Permanent link

Direct link
Dongare, Prateek
Publications (1 of 1) Show all publications
Dongare, P., Maji, S. & Hammarström, L. (2016). Direct Evidence of a Tryptophan Analogue Radical Formed in a Concerted Electron-Proton Transfer Reaction in Water. Journal of the American Chemical Society, 138(7), 2194-2199
Open this publication in new window or tab >>Direct Evidence of a Tryptophan Analogue Radical Formed in a Concerted Electron-Proton Transfer Reaction in Water
2016 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 138, no 7, p. 2194-2199Article in journal (Refereed) Published
Abstract [en]

Proton-coupled electron transfer (PCET) is a fundamental reaction step of many chemical and biological processes. Well-defined biomimetic systems are promising tools for investigating the PCET mechanisms relevant to natural proteins. Of particular interest is the possibility to distinguish between stepwise and concerted transfer of the electron and proton, and how PCET is controlled by a proton acceptor such as water. Thus, many tyrosine and phenolic derivatives have been shown to undergo either stepwise or concerted PCET, where the latter process is defined by simultaneous tunneling of the electron and proton from the same transition state. For tryptophan instead, it is theoretically predicted that a concerted pathway can never compete with the stepwise electron-first mechanism (ETPT) when neat water is the primary proton acceptor. The argument is based on the radical pK(a)(similar to 4.5) that is much higher than that for water (pK(a)(H3O+) = 0), which thermodynamically disfavors a concerted proton transfer to H2O. This is in contrast to the very acidic radical cation of tyrosine (pK(a) similar to -2). However, in this study we show, by direct time-resolved absorption spectroscopy on two [Ru(bpy)(3)](2+) tryptophan (bpy = 2,2'-bipyridine) analogue complexes, that also tryptophan oxidation with water as a proton acceptor can occur via a concerted pathway, provided that the oxidant has weak enough driving force. This rivals the theoretical predictions and suggests that our current understanding of PCET reactions in water is incomplete.

National Category
Physical Chemistry
urn:nbn:se:uu:diva-282314 (URN)10.1021/jacs.5b08294 (DOI)000371103900031 ()26871741 (PubMedID)
Swedish Research CouncilSwedish Energy AgencyKnut and Alice Wallenberg Foundation
Available from: 2016-04-05 Created: 2016-04-05 Last updated: 2017-11-30

Search in DiVA

Show all publications