uu.seUppsala University Publications
Change search
Link to record
Permanent link

Direct link
BETA
Johansson, Emil
Publications (4 of 4) Show all publications
Boersma, G. J., Johansson, E., Pereira, M. J., Heurling, K., Skrtic, S., Lau, J., . . . Eriksson, J. (2018). Altered Glucose Uptake in Muscle, Visceral Adipose Tissue, and Brain Predict Whole-Body Insulin Resistance and may Contribute to the Development of Type 2 Diabetes: A Combined PET/MR Study. Hormone and Metabolic Research, 50(8), 627-639
Open this publication in new window or tab >>Altered Glucose Uptake in Muscle, Visceral Adipose Tissue, and Brain Predict Whole-Body Insulin Resistance and may Contribute to the Development of Type 2 Diabetes: A Combined PET/MR Study
Show others...
2018 (English)In: Hormone and Metabolic Research, ISSN 0018-5043, E-ISSN 1439-4286, Vol. 50, no 8, p. 627-639Article in journal (Refereed) Published
Abstract [en]

We assessed glucose uptake in different tissues in type 2 diabetes (T2D), prediabetes, and control subjects to elucidate its impact in the development of whole-body insulin resistance and T2D. Thirteen T2D, 12 prediabetes, and 10 control subjects, matched for age and BMI, underwent OGTT and abdominal subcutaneous adipose tissue (SAT) biopsies. Integrated whole-body 18F-FDG PET and MRI were performed during a hyperinsulinemic euglycemic clamp to asses glucose uptake rate (MRglu) in several tissues. MRglu in skeletal muscle, SAT, visceral adipose tissue (VAT), and liver was significantly reduced in T2D subjects and correlated positively with M-values (r=0.884, r=0.574, r=0.707 and r=0.403, respectively). Brain MRglu was significantly higher in T2D and prediabetes subjects and had a significant inverse correlation with M-values (r=-0.616). Myocardial MRglu did not differ between groups and did not correlate with the M-values. A multivariate model including skeletal muscle, brain and VAT MRglu best predicted the M-values (adjusted r2=0.85). In addition, SAT MRglu correlated with SAT glucose uptake ex vivo (r=0.491). In different stages of the development of T2D, glucose uptake during hyperinsulinemia is elevated in the brain in parallel with an impairment in peripheral organs. Impaired glucose uptake in skeletal muscle and VAT together with elevated glucose uptake in brain were independently associated with whole-body insulin resistance, and these tissue-specific alterations may contribute to T2D development.

Place, publisher, year, edition, pages
Georg Thieme Verlag KG, 2018
National Category
Endocrinology and Diabetes
Identifiers
urn:nbn:se:uu:diva-356788 (URN)10.1055/a-0643-4739 (DOI)000440872200007 ()30001566 (PubMedID)
Funder
AstraZenecaEXODIAB - Excellence of Diabetes Research in SwedenSwedish Diabetes AssociationSwedish Research CouncilErnfors Foundation
Available from: 2018-08-07 Created: 2018-08-07 Last updated: 2018-11-08Bibliographically approved
Johansson, E., Lubberink, M., Heurling, K., Eriksson, J. W., Skrtic, S., Ahlström, H. & Kullberg, J. (2018). Whole-Body Imaging of Tissue-specific Insulin Sensitivity and Body Composition by Using an Integrated PET/MR System: A Feasibility Study.. Radiology, 286(1), 271-278
Open this publication in new window or tab >>Whole-Body Imaging of Tissue-specific Insulin Sensitivity and Body Composition by Using an Integrated PET/MR System: A Feasibility Study.
Show others...
2018 (English)In: Radiology, ISSN 0033-8419, E-ISSN 1527-1315, Vol. 286, no 1, p. 271-278Article in journal (Refereed) Published
Abstract [en]

Purpose

To develop, evaluate, and demonstrate the feasibility of a whole-body protocol for simultaneous assessment of tissue-specific insulin-mediated fluorine 18 (18F) fluorodeoxyglucose (FDG) influx rates, tissue depots, and whole-body insulin sensitivity (referred to as the M value).

Materials and Methods

An integrated positron emission tomography (PET)/magnetic resonance (MR) imaging system combined with hyperinsulinemic euglycemic clamp (HEC) was used. Dynamic whole-body PET imaging was used to determine the insulin-mediated 18F-FDG tissue influx rate (Ki) in the whole-body region by using the Patlak method. M value was determined with the HEC method at PET imaging. Tissue depots were quantified by using water-fat separated MR imaging and manual segmentations. Feasibility of the imaging protocol was demonstrated by using five healthy control participants and five patients with type 2 diabetes. Associations between M value and Ki were studied in multiple tissues by using the Pearson correlation.

Results

Positive correlations were found between M value and Ki in multiple tissues: the gluteus muscle (r = 0.875; P = .001), thigh muscle (r = 0.903; P , .001), calf muscle (r = 0.825; P = .003), and abdominal visceral adipose tissue (r = 0.820; P = .004). A negative correlation was found in the brain (r = 20.798; P = .006). The MR imaging–based method for quantification of tissue depots was feasible for determining adipose tissue volumes and fat fractions.

Conclusion

This PET/MR imaging protocol may be feasible for simultaneous assessment of tissue-specific insulin-mediated 18F-FDG influx rates, tissue depots, and M value.

National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:uu:diva-329272 (URN)10.1148/radiol.2017162949 (DOI)000422905200034 ()28846496 (PubMedID)
Funder
AstraZeneca
Available from: 2017-09-11 Created: 2017-09-11 Last updated: 2018-03-16Bibliographically approved
Boersma, G. J., Heurling, K., Pereira, M. J., Johansson, E., Lubberink, M., Lau Börjesson, J., . . . Eriksson, J. W. (2017). Glucose uptake in skeletal muscle, brain and visceral adipose tissue assessed with PET/MR strongly predicts whole body glucose uptake during hyperinsulinaemia. Paper presented at 53rd Annual Meeting of the European-Association-for-the-Study-of-Diabetes (EASD), SEP 11-15, 2017, Lisbon, PORTUGAL. Diabetologia, 60, S80-S80
Open this publication in new window or tab >>Glucose uptake in skeletal muscle, brain and visceral adipose tissue assessed with PET/MR strongly predicts whole body glucose uptake during hyperinsulinaemia
Show others...
2017 (English)In: Diabetologia, ISSN 0012-186X, E-ISSN 1432-0428, Vol. 60, p. S80-S80Article in journal, Meeting abstract (Other academic) Published
National Category
Endocrinology and Diabetes
Identifiers
urn:nbn:se:uu:diva-346985 (URN)000408315000170 ()
Conference
53rd Annual Meeting of the European-Association-for-the-Study-of-Diabetes (EASD), SEP 11-15, 2017, Lisbon, PORTUGAL
Available from: 2018-03-23 Created: 2018-03-23 Last updated: 2018-03-23Bibliographically approved
Boersma, G. J., Johansson, E., Pereira, M. J., Skrtic, S., Lau Börjesson, J., Katsogiannos, P., . . . Eriksson, J. W. (2016). Skeletal muscle and liver, but not brain, account for impaired glucose utilisation in type 2 diabetes: whole-body PET/MR during hyperinsulinaemic euglycaemic clamp. Paper presented at 52nd Annual Meeting of the European-Association-for-the-Study-of-Diabetes (EASD), SEP 12-16, 2016, Munich, GERMANY. Diabetologia, 59, S33-S33
Open this publication in new window or tab >>Skeletal muscle and liver, but not brain, account for impaired glucose utilisation in type 2 diabetes: whole-body PET/MR during hyperinsulinaemic euglycaemic clamp
Show others...
2016 (English)In: Diabetologia, ISSN 0012-186X, E-ISSN 1432-0428, Vol. 59, p. S33-S33Article in journal (Refereed) Published
Place, publisher, year, edition, pages
SPRINGER, 2016
National Category
Endocrinology and Diabetes
Identifiers
urn:nbn:se:uu:diva-322038 (URN)000398373700064 ()
Conference
52nd Annual Meeting of the European-Association-for-the-Study-of-Diabetes (EASD), SEP 12-16, 2016, Munich, GERMANY
Available from: 2017-05-16 Created: 2017-05-16 Last updated: 2017-05-16Bibliographically approved
Organisations

Search in DiVA

Show all publications