uu.seUppsala University Publications
Change search
Link to record
Permanent link

Direct link
BETA
Publications (10 of 13) Show all publications
Jana, S., Panda, S. K., Phuyal, D., Pal, B., Mukherjee, S., Dutta, A., . . . Sarma, D. D. (2019). Charge disproportionate antiferromagnetism at the verge of the insulator-metal transition in doped LaFeO3. Physical Review B, 99(7), Article ID 075106.
Open this publication in new window or tab >>Charge disproportionate antiferromagnetism at the verge of the insulator-metal transition in doped LaFeO3
Show others...
2019 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 99, no 7, article id 075106Article in journal (Refereed) Published
Abstract [en]

We explore the effects of electron doping in lanthanum ferrite, LaFeO3 by doping Mo at the Fe sites. Based on magnetic, transport, scanning tunneling spectroscopy, and x-ray photoelectron spectroscopy measurements, we find that the large gap, charge-transfer, antiferromagnetic (AFM) insulator LaFeO3 becomes a small gap AFM band insulator at low Mo doping. With increasing doping concentration, Mo states, which appear around the Fermi level, is broadened and become gapless at a critical doping of 20%. Using a combination of calculations based on density functional theory plus Hubbard U (DFT+U) and x-ray absorption spectroscopy measurements, we find that the system shows charge disproportionation (CD) in Fe ions at 25% Mo doping, where two distinct Fe sites, having Fe2+ and Fe3+ nominal charge states appear. A local breathing-type lattice distortion induces the charge disproportionation at the Fe site without destroying the antiferromagnetic order. Our combined experimental and theoretical investigations establish that the Fe states form a CD antiferromagnet at 25% Mo doping, which remains insulating, while the appearance of Mo states around the Fermi level is showing an indication towards the insulator-metal transition.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC, 2019
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-378537 (URN)10.1103/PhysRevB.99.075106 (DOI)000458168300001 ()
Funder
Swedish Research Council, 2016-4524Knut and Alice Wallenberg Foundation, 2012.0031Swedish Energy Agency, P43294-1EU, European Research Council, CorrelMat-617196Swedish Research Council, 2016-03278Swedish Research CouncilSwedish Foundation for Strategic Research Carl Tryggers foundation , CTS-17:376eSSENCE - An eScience CollaborationStandUp
Available from: 2019-03-21 Created: 2019-03-21 Last updated: 2019-03-21Bibliographically approved
Phuyal, D., Mukherjee, S., Jana, S., Denoel, F., Kamalakar, M. V., Butorin, S. M., . . . Karis, O. (2019). Ferroelectric properties of BaTiO3 thin films co-doped with Mn and Nb. AIP Advances, 9(9), Article ID 095207.
Open this publication in new window or tab >>Ferroelectric properties of BaTiO3 thin films co-doped with Mn and Nb
Show others...
2019 (English)In: AIP Advances, ISSN 2158-3226, E-ISSN 2158-3226, Vol. 9, no 9, article id 095207Article in journal (Refereed) Published
Abstract [en]

We report on properties of BaTiO3 thin films where the bandgap is tuned via aliovalent doping of Mn and Nb ions co-doped at the Ti site. The doped films show single-phase tetragonal structure, growing epitaxially with a smooth interface to the substrate. Using piezoforce microscopy, we find that both doped and undoped films exhibit good ferroelectric response. The piezoelectric domain switching in the films was confirmed by measuring local hysteresis of the polarization at several different areas across the thin films, demonstrating a switchable ferroelectric state. The doping of the BaTiO3 also reduces the bandgap of the material from 3.2 eV for BaTiO3 to nearly 2.7 eV for the 7.5% doped sample, suggesting the viability of the films for effective light harvesting in the visible spectrum. The results demonstrate co-doping as an effective strategy for bandgap engineering and a guide for the realization of visible-light applications using its ferroelectric properties.

Place, publisher, year, edition, pages
American Institute of Physics, 2019
Keywords
ferroelectric, complex oxides
National Category
Condensed Matter Physics
Research subject
Physics with spec. in Atomic, Molecular and Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-393045 (URN)10.1063/1.5118869 (DOI)
Funder
Swedish Research Council, 2018-04330
Available from: 2019-09-13 Created: 2019-09-13 Last updated: 2019-09-13Bibliographically approved
Serrano, I. G., Panda, J., Denoel, F., Vallin, Ö., Phuyal, D., Karis, O. & Kamalakar, M. V. (2019). Two-Dimensional Flexible High Diffusive Spin Circuits. Nano letters (Print), 19(2), 666-673
Open this publication in new window or tab >>Two-Dimensional Flexible High Diffusive Spin Circuits
Show others...
2019 (English)In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 19, no 2, p. 666-673Article in journal (Refereed) Published
Abstract [en]

Owing to their unprecedented electronic properties, graphene and two-dimensional (2D) crystals have brought fresh opportunities for advances in planar spintronic devices. Graphene is an ideal medium for spin transport while being an exceptionally resilient material for flexible nanoelectronics. However, these extraordinary traits have never been combined to create flexible graphene spin circuits. Realizing such circuits could lead to bendable strain-spin sensors, as well as a unique platform to explore pure spin current based operations and low-power 2D flexible nanoelectronics. Here, we demonstrate graphene spin circuits on flexible substrates for the first time. Despite the rough topography of the flexible substrates, these circuits prepared with chemical vapor deposited monolayer graphene reveal an efficient room temperature spin transport with distinctively large spin diffusion coefficients ∼0.2 m2 s–1. Compared to earlier graphene devices on Si/SiO2 substrates, such values are up to 20 times larger, leading to one order higher spin signals and an enhanced spin diffusion length ∼10 μm in graphene-based nonlocal spin valves fabricated using industry standard systems. This high performance arising out of a characteristic substrate terrain shows promise of a scalable and flexible platform towards flexible 2D spintronics. Our innovation is a key step for the exploration of strain-dependent 2D spin phenomena and paves the way for flexible graphene spin memory–logic units and planar spin sensors.

Keywords
Flexible graphene spin circuits, flexible graphene spintronics, spin transport in graphene, two-dimensional spintronics, bendable nanoelectronics
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-378732 (URN)10.1021/acs.nanolett.8b03520 (DOI)000459222300006 ()30632370 (PubMedID)
Funder
Swedish Research Council, 2016-03278Knut and Alice Wallenberg FoundationStiftelsen Olle Engkvist ByggmästareThe Wenner-Gren Foundation
Available from: 2019-03-08 Created: 2019-03-08 Last updated: 2019-03-08Bibliographically approved
Jain, S. M., Phuyal, D., Davies, M. L., Li, M., Philippe, B., De Castro, C., . . . Durrant, J. R. (2018). An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)(3)Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energy, 49, 614-624
Open this publication in new window or tab >>An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)(3)Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability
Show others...
2018 (English)In: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 49, p. 614-624Article in journal (Refereed) Published
Abstract [en]

We present a controlled, stepwise formation of methylammonium bismuth iodide (CH3NH3)(3)Bi2I9 perovskite films prepared via the vapour assisted solution process (VASP) by exposing BiI3 films to CH3NH3I (MAI) vapours for different reaction times, (CH3NH3)(3)Bi2I9 semiconductor films with tunable optoelectronic properties are obtained. Solar cells prepared on mesoporous TiO2 substrates yielded hysteresis-free efficiencies upto 3.17% with good reproducibility. The good performance is attributed mainly to the homogeneous surface coverage, improved stoichiometry, reduced metallic content in the bulk, and desired optoelectronic properties of the absorbing material. In addition, solar cells prepared using pure BiI3 films without MAI exposure achieved a power conversion efficiency of 0.34%. The non-encapsulated (CH3NH3)(3)Bi2I9 devices were found to be stable for as long as 60 days with only 0.1% drop in efficiency. This controlled formation of (CH3NH3)(3)Bi2I9 perovskite films highlights the benefit of the VASP technique to optimize material stoichiometry, morphology, solar cell performance, and long-term durability.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE BV, 2018
Keywords
Vapour assisted solution process (VASP), Lead free perovskite, (CH3NH3)(3)Bi2I9, Morphological tailoring, High resolution X-ray photoelectron (HAXPES) spectroscopy
National Category
Materials Chemistry Condensed Matter Physics Engineering and Technology
Identifiers
urn:nbn:se:uu:diva-358277 (URN)10.1016/j.nanoen.2018.05.003 (DOI)000434829500071 ()
Funder
Swedish Research CouncilEU, Horizon 2020, 663830
Available from: 2018-08-27 Created: 2018-08-27 Last updated: 2018-10-26Bibliographically approved
Phuyal, D. (2018). An X-ray Spectroscopic Study of Perovskites Oxides and Halides for Emerging Devices. (Doctoral dissertation). Uppsala: Acta Universitatis Upsaliensis
Open this publication in new window or tab >>An X-ray Spectroscopic Study of Perovskites Oxides and Halides for Emerging Devices
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis investigates the electronic structures on several perovskite oxide and halide materials with a focus on light harvesting applications. The systematic study of the electronic properties of the transition metal oxides and post-transition metal halides is a key point if one is to understand their properties. The element and site selective nature of several x-ray based spectroscopic techniques are given special emphasis in order to obtain a complete picture of the electronic properties of the compounds in question. Much of the experimental studies are accompanied by ab initio calculations that corroborate with our experimental results.

In the oxide portion of this work, a new class of metallic oxides based on doping of an antiferromagnetic LaFeO3 was synthesized and systematically studied with x-ray absorption, x-ray emission, and photoemission spectroscopies. The compound’s electronic structure is complex, having itinerant as well as localized components that give rise to a unique physical state where antiferromagnetism, metallicity and charge-disproportionation coexist. Our resonant photoemission results establish that the Fe states in both magnetically ordered oxides show insulting properties, while the Mo states provide an itinerant band crossing the Fermi level. An excitation energy-dependent RIXS investigation on LaFe1-xMoxO3 and the double perovskite Sr2FeMoO6 revealed a double peak structure located in proximity to the elastic peak that is identified to purely d-d excitations, attributed to the strongly correlated nature of these transition metal compounds.

The growth of high-quality thin film ferroelectric based on BaTiO3 grown epitaxially by means of pulsed laser deposition were investigated. We systematically reduce the band gap of the ferroelectric thin film while retaining its polarization at ambient conditions in spite of the aliovalent doping. The electronic structure is studied by several x-ray techniques that show how the ferroelectricity persists as well as the effective reduction of the band gap through hybridized states.

In the post-transition metal halides, the valence and conduction bands were mapped using x-ray absorption, emission, and photoemission spectroscopies. The spectroscopic results identify the constituent states that form the valence band as well as the band energy positions, which is an imperative parameter in optoelectronic devices. In addition, x-ray based spectroscopy was used to demonstrate the stereochemical activity of lone-pair states (5s2 and 6s2) for several different halide compounds and their influence on the chemical, structural, and electronic properties of the material. Nanostructured halide perovskites are also explored. The position of iodine p states and valence band states in reduced dimensional lead-based compounds were examined, as their states are found to be confined in one crystallographic direction in contrast to their three-dimensional counterpart. This information highlights the interesting material properties and their use in current third generation solar cell research.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2018. p. 84
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1740
Keywords
perovskite oxides, halide perovskites, x-ray spectroscopy, electronic structure
National Category
Condensed Matter Physics
Research subject
Physics with spec. in Atomic, Molecular and Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-364407 (URN)978-91-513-0493-9 (ISBN)
Public defence
2018-12-14, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2018-11-21 Created: 2018-10-26 Last updated: 2018-11-30
Phuyal, D., Safdari, M., Pazoki, M., Liu, P., Philippe, B., Kvashnina, K. O., . . . Gardner, J. (2018). Electronic Structure of Two-Dimensional Lead(II) Iodide Perovskites: An Experimental and Theoretical Study. Chemistry of Materials, 30(15), 4959-4967
Open this publication in new window or tab >>Electronic Structure of Two-Dimensional Lead(II) Iodide Perovskites: An Experimental and Theoretical Study
Show others...
2018 (English)In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 30, no 15, p. 4959-4967Article in journal (Refereed) Published
Abstract [en]

Layered two-dimensional (2D) hybrid organic-inorganic perovskites (HOP) are promising materials for light-harvesting applications because of their chemical stability, wide flexibility in composition and dimensionality, and increases in photovoltaic power conversion efficiencies. Three 2D lead iodide perovskites were studied through various X-ray spectroscopic techniques to derive detailed electronic structures and band energetics profiles at a titania interface. Core-level and valence band photoelectron spectra of HOP were analyzed to resolve the electronic structure changes due to the reduced dimensionality of inorganic layers. The results show orbital narrowing when comparing the HOP, the layered precursor PbI2, and the conventional 3D (CH3NH3)PbI3 such that different localizations of band edge states and narrow band states are unambiguously due to the decrease in dimensionality of the layered HOPs. Support from density functional theory calculations provide further details on the interaction and band gap variations of the electronic structure. We observed an interlayer distance dependent dispersion in the near band edge electronic states. The results show how tuning the interlayer distance between the inorganic layers affects the electronic properties and provides important design principles for control of the interlayer charge transport properties, such as the change in effective charge masses as a function of the organic cation length. The results of these findings can be used to tune layered materials for optimal functionality and new applications.

National Category
Condensed Matter Physics Engineering and Technology
Identifiers
urn:nbn:se:uu:diva-361922 (URN)10.1021/acs.chemmater.8b00909 (DOI)000442186500014 ()
Funder
StandUpSwedish Energy AgencySwedish Research CouncilKnut and Alice Wallenberg Foundation
Note

De två första författarna delar förstaförfattarskapet.

Available from: 2018-09-27 Created: 2018-09-27 Last updated: 2018-11-02Bibliographically approved
Zhang, X., Zhang, J., Phuyal, D., Du, J., Tian, L., Öberg, V. A., . . . Johansson, E. M. J. (2018). Inorganic CsPbI3 Perovskite Coating on PbS Quantum Dot for Highly Efficient and Stable Infrared Light Converting Solar Cells. Advanced Energy Materials, 8(6), Article ID 1702049.
Open this publication in new window or tab >>Inorganic CsPbI3 Perovskite Coating on PbS Quantum Dot for Highly Efficient and Stable Infrared Light Converting Solar Cells
Show others...
2018 (English)In: Advanced Energy Materials, ISSN 1614-6832, Vol. 8, no 6, article id 1702049Article in journal (Refereed) Published
Abstract [en]

Solution-processed colloidal quantum dot (CQD) solar cells harvesting the infrared part of the solar spectrum are especially interesting for future use in semitransparent windows or multilayer solar cells. To improve the device power conversion efficiency (PCE) and stability of the solar cells, surface passivation of the quantum dots is vital in the research of CQD solar cells. Herein, inorganic CsPbI3 perovskite (CsPbI3-P) coating on PbS CQDs with a low-temperature, solution-processed approach is reported. The PbS CQD solar cell with CsPbI3-P coating gives a high PCE of 10.5% and exhibits remarkable stability both under long-term constant illumination and storage under ambient conditions. Detailed characterization and analysis reveal improved passivation of the PbS CQDs with the CsPbI3-P coating, and the results suggest that the lattice coherence between CsPbI3-P and PbS results in epitaxial induced growth of the CsPbI3-P coating. The improved passivation significantly diminishes the sub-bandgap trap-state assisted recombination, leading to improved charge collection and therefore higher photovoltaic performance. This work therefore provides important insight to improve the CQD passivation by coating with an inorganic perovskite ligand for photovoltaics or other optoelectronic applications.

Place, publisher, year, edition, pages
WILEY-V C H VERLAG GMBH, 2018
Keywords
charge recombination, inorganic perovskite, quantum dots, solar cells, surface passivation
National Category
Physical Chemistry Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-348982 (URN)10.1002/aenm.201702049 (DOI)000426152400017 ()
Funder
Swedish Energy AgencySwedish Research CouncilSwedish Research Council Formas
Available from: 2018-04-26 Created: 2018-04-26 Last updated: 2018-10-26Bibliographically approved
Paul, S., Iusan, D., Thunström, P., Kvashnin, Y., Hellsvik, J., Pereiro, M., . . . Eriksson, O. (2018). Investigation of the spectral properties and magnetism of BiFeO3 by dynamical mean-field theory. Physical Review B, 97(12), Article ID 125120.
Open this publication in new window or tab >>Investigation of the spectral properties and magnetism of BiFeO3 by dynamical mean-field theory
Show others...
2018 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 97, no 12, article id 125120Article in journal (Refereed) Published
Abstract [en]

Using the local density approximation plus dynamical mean-field theory (LDA+DMFT), we have computed the valence-band photoelectron spectra and magnetic excitation spectra of BiFeO3, one of the most studied multiferroics. Within the DMFT approach, the local impurity problem is tackled by the exact diagonalization solver. The solution of the impurity problem within the LDA+DMFT method for the paramagnetic and magnetically ordered phases produces result in agreement with the experimental data on electronic and magnetic structures. For comparison, we also present results obtained by the LDA+U approach which is commonly used to compute the physical properties of this compound. Our LDA+DMFT derived electronic spectra match adequately with the experimental hard x-ray photoelectron spectroscopy and resonant photoelectron spectroscopy for Fe 3d states, whereas the LDA+U method fails to capture the general features of the measured spectra. This indicates the importance of accurately incorporating the dynamical aspect of electronic correlation among Fe 3d orbitals to reproduce the experimental excitation spectra. Specifically, the LDA+DMFT derived density of states exhibits a significant amount of Fe 3d states at the position of Bi lone pairs, implying that the latter are not alone in the spectral scenario. This fact might modify our interpretation about the origin of ferroelectric polarization in this material. Our study demonstrates that the combination of orbital cross sections for the constituent elements and broadening schemes for the spectral functions are crucial to explain the detailed structures of the experimental electronic spectra. Our magnetic excitation spectra computed from the LDA+DMFT result conform well with the inelastic neutron scattering data.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC, 2018
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-351431 (URN)10.1103/PhysRevB.97.125120 (DOI)000427602000002 ()
Funder
Swedish Research CouncilCarl Tryggers foundation
Available from: 2018-06-01 Created: 2018-06-01 Last updated: 2018-06-01Bibliographically approved
Phuyal, D., Jain, S. M., Philippe, B., Johansson, M. B., Pazoki, M., Kullgren, J., . . . Rensmo, H. (2018). The electronic structure and band interface of cesium bismuth iodide on a titania heterostructure using hard X-ray spectroscopy. Journal of Materials Chemistry A, 6(20), 9498-9505
Open this publication in new window or tab >>The electronic structure and band interface of cesium bismuth iodide on a titania heterostructure using hard X-ray spectroscopy
Show others...
2018 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, no 20, p. 9498-9505Article in journal (Refereed) Published
Abstract [en]

Bismuth halide compounds as a non-toxic alternative are increasingly investigated because of their potential in optoelectronic devices and their rich structural chemistry. Hard X-ray spectroscopy was applied to the ternary bismuth halide Cs3Bi2I9 and its related precursors BiI3 and CsI to understand its electronic structure at an atomic level. We specifically investigated the core levels and valence band using X-ray photoemission spectroscopy (PES), high-resolution X-ray absorption (HERFD-XAS), and resonant inelastic X-ray scattering (RIXS) to get insight into the chemistry and the band edge properties of the two bismuth compounds. Using these element specific X-ray techniques, our experimental electronic structures show that the primary differences between the two bismuth samples are the position of the iodine states in the valence and conduction bands and the degree of hybridization with bismuth lone pair (6s(2)) states. The crystal structure of the two layered quasi-perovskite compounds plays a minor role in modifying the overall electronic structure, with variations in bismuth lone pair states and iodine band edge states. Density Functional Theory (DFT) calculations are used to compare with experimental data. The results demonstrate the effectiveness of hard X-ray spectroscopies to identify element specific bulk electronic structures and their use in optoelectronic devices.

National Category
Materials Chemistry Physical Chemistry
Identifiers
urn:nbn:se:uu:diva-357561 (URN)10.1039/c8ta00947c (DOI)000433427300020 ()
Funder
Swedish Research Council, 2014-6019Swedish Research Council, 2016-4524Swedish Energy Agency, P43549-1Swedish Foundation for Strategic Research , 15-0130Wallenberg Foundations, 2012.0031StandUp
Available from: 2018-08-20 Created: 2018-08-20 Last updated: 2019-02-19Bibliographically approved
Phuyal, D., Mukherjee, S., Das, S., Jana, S., Kvashnina, K. O., Sarma, D., . . . Karis, O. (2018). The origin of low bandgap and ferroelectricity of a co-doped BaTiO3. Europhysics letters, 124(2), Article ID 27005.
Open this publication in new window or tab >>The origin of low bandgap and ferroelectricity of a co-doped BaTiO3
Show others...
2018 (English)In: Europhysics letters, ISSN 0295-5075, E-ISSN 1286-4854, Vol. 124, no 2, article id 27005Article in journal (Refereed) Published
Abstract [en]

We recently demonstrated the lowest bandgap bulk ferroelectric material, BaTi1-x(Mn1/2Nb1/2)xO3, a promising candidate material for visible light absorption in opto- electronic devices. Using a combination of x-ray spectroscopies and density functional theory (DFT) calculations, we here elucidate this compound’s electronic structure and the modifications induced by Mn doping. In particular, we are able to rationalize how this compound retains its ferroelectricity even through a significant reduction of the optical gap upon Mn doping. The local electronic structure and atomic coordination are investigated using x-ray absorption at the Ti K, Mn K, and O K edges, which suggests only small distortions to the parent tetragonal ferroelectric system, BaTiO3, thereby providing a clue to the substantial retention of ferroelectricity in spite of doping. Features at the Ti K edge, which are sensitive to local symmetry and an indication of Ti off-centering within the Ti-O6 octahedra, show modest changes with doping and strongly corroborates with our measured polarization values. Resonant photoelectron spectroscopy results suggest the origin of the reduction of the bandgap in terms of newly created Mn d bands that hybridize with O 2p states. X-ray absorption spectra at the O K-edge provide evidence for new states below the conduction band of the parent compound, illustrating additional contributions facilitating bandgap reduction.

National Category
Condensed Matter Physics
Research subject
Physics with spec. in Atomic, Molecular and Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-364369 (URN)10.1209/0295-5075/124/27005 (DOI)000450630500002 ()
Funder
Swedish Foundation for Strategic Research , 15-0130Knut and Alice Wallenberg Foundation, 2012.0031Swedish Energy Agency, P43549-1Swedish Energy Agency, P43294-1Swedish Research Council, 2014-7019Swedish Research Council, 2016-4524
Note

Corection in: EPL, Volume: 124, Issue: 6, Article Number: 69901, DOI: 10.1209/0295-5075/124/69901

Available from: 2018-10-25 Created: 2018-10-25 Last updated: 2019-02-04Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0003-0351-3138

Search in DiVA

Show all publications