uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A perfectly matched layer applied to a reactive scattering problem
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för teknisk databehandling. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för fysikalisk och analytisk kemi, Kvantkemi.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för teknisk databehandling. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.
2010 (engelsk)Inngår i: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 133, s. 054306:1-11Artikkel i tidsskrift (Fagfellevurdert) Published
sted, utgiver, år, opplag, sider
2010. Vol. 133, s. 054306:1-11
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-129174DOI: 10.1063/1.3458888ISI: 000281215000013OAI: oai:DiVA.org:uu-129174DiVA, id: diva2:337594
Prosjekter
eSSENCETilgjengelig fra: 2010-08-04 Laget: 2010-08-06 Sist oppdatert: 2017-12-12bibliografisk kontrollert
Inngår i avhandling
1. Absorbing boundary techniques for the time-dependent Schrödinger equation
Åpne denne publikasjonen i ny fane eller vindu >>Absorbing boundary techniques for the time-dependent Schrödinger equation
2010 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Chemical dissociation processes are important in quantum dynamics. Such processes can be investigated theoretically and numerically through the time-dependent Schrödinger equation, which gives a quantum mechanical description of molecular dynamics.

This thesis discusses the numerical simulation of chemical reactions involving dissociation. In particular, an accurate boundary treatment in terms of artificial, absorbing boundaries of the computational domain is considered. The approach taken here is based on the perfectly matched layer technique in a finite difference framework. The errors introduced due to the perfectly matched layer can be divided into two categories, the modeling error from the continuous model and numerical reflections that arise for the discretized problem. We analyze the different types of errors using plane wave analysis, and parameters of the perfectly matched layer are optimized so that the modeling error and the numerical reflections are of the same order. The level of accuracy is determined by estimating the order of the spatial error in the interior domain. Numerical calculations show that this procedure enables efficient calculations within a given accuracy. We apply our perfectly matched layer to a three-state system describing a one-dimensional IBr molecule subjected to a laser field and to a two-dimensional model problem treating dissociative adsorbtion and associative desorption of an H2 molecule on a solid surface. Comparisons made to standard absorbing layers in chemical physics prove our approach to be efficient, especially when high accuracy is of importance.

sted, utgiver, år, opplag, sider
Uppsala University, 2010
Serie
IT licentiate theses / Uppsala University, Department of Information Technology, ISSN 1404-5117 ; 2010-001
HSV kategori
Forskningsprogram
Beräkningsvetenskap med inriktning mot numerisk analys
Identifikatorer
urn:nbn:se:uu:diva-113087 (URN)
Veileder
Prosjekter
eSSENCE
Tilgjengelig fra: 2010-02-11 Laget: 2010-01-25 Sist oppdatert: 2017-08-31bibliografisk kontrollert
2. High Order Finite Difference Methods with Artificial Boundary Treatment in Quantum Dynamics
Åpne denne publikasjonen i ny fane eller vindu >>High Order Finite Difference Methods with Artificial Boundary Treatment in Quantum Dynamics
2011 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The investigation of the dynamics of chemical reactions, both from the theoretical and experimental side, has drawn an increasing interest since Ahmed H. Zewail was awarded the 1999 Nobel Prize in Chemistry for his work on femtochemistry. On the experimental side, new techniques such as femtosecond lasers and attosecond lasers enable laser control of chemical reactions. Numerical simulations serve as a valuable complement to experimental techniques, not only for validation of experimental results, but also for simulation of processes that cannot be investigated through experiments. With increasing computer capacity, more and more physical phenomena fall within the range of what is possible to simulate. Also, the development of new, efficient numerical methods further increases the possibilities.

The focus of this thesis is twofold; numerical methods for chemical reactions including dissociative states and methods that can deal with coexistence of spatial regions with very different physical properties. Dissociative chemical reactions are reactions where molecules break up into smaller components. The dissociation can occur spontaneously, e.g. by radioactive decay, or be induced by adding energy to the system, e.g. in terms of a laser field. Quantities of interest can for instance be the reaction probabilities of possible chemical reactions. This thesis discusses a boundary treatment model based on the perfectly matched layer (PML) approach to accurately describe dynamics of chemical reactions including dissociative states. The limitations of the method are investigated and errors introduced by the PML are quantified.

The ability of a numerical method to adapt to different scales is important in the study of more complex chemical systems. One application of interest is long-range molecules, where the atoms are affected by chemical attractive forces that lead to fast movement in the region where they are close to each other and exhibits a relative motion of the atoms that is very slow in the long-range region. A numerical method that allows for spatial adaptivity is presented, based on the summation-by-parts-simultaneous approximation term (SBP-SAT) methodology. The accuracy and the robustness of the numerical method are investigated.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2011. s. 48
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 864
Emneord
Schrödinger equation, finite difference methods, perfectly matched layer, summation-by-parts operators, adaptive discretization, stability
HSV kategori
Forskningsprogram
Beräkningsvetenskap med inriktning mot numerisk analys
Identifikatorer
urn:nbn:se:uu:diva-159856 (URN)978-91-554-8180-3 (ISBN)
Disputas
2011-11-25, Room 2446, Polacksbacken, Lägerhyddsvägen 2D, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Prosjekter
eSSENCE
Tilgjengelig fra: 2011-11-03 Laget: 2011-10-11 Sist oppdatert: 2011-11-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Nissen, AnnaKarlsson, Hans O.Kreiss, Gunilla

Søk i DiVA

Av forfatter/redaktør
Nissen, AnnaKarlsson, Hans O.Kreiss, Gunilla
Av organisasjonen
I samme tidsskrift
Journal of Chemical Physics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1100 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf