Åpne denne publikasjonen i ny fane eller vindu >>2007 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]
Biological invasion has become a major threat to economy, ecology, global biodiversity and ecosystem function of aquatic ecosystems. The main aim of the thesis was to study the effects of the zebra mussel (Dreissena polymorpha), a versatile invasive species, on phytoplankton dynamics and ecosystem function of lakes.
In a first attempt, I compared the density of Dreissena and the physicochemical data of ecosystems that it invaded among North American and European lakes to identify important factors in its invasion success. Secondly, I investigated the impact of zebra mussels on phytoplankton community composition in a natural lake. Thirdly, I evaluated whether zebra mussel feeding behavior were affected by the presence of predatory waterborne cues. Finally, I examined the effect of Dreissena on seston stoichiometry.
A Generalized Additive Model revealed that a joint effect of surface area, mean depth, total phosphorus and calcium concentrations can explain the variability in Dreissena density. Selective grazing by zebra mussels varied in relation to seasonal phytoplankton dynamics. Risk cues released by predators affected both feeding rate and prey selection of the mussels and had cascading indirect effects on phytoplankton biomass and community structure. I found that the flux in nutrients caused by differences in zebra mussel consumption lead to a variation in phytoplankton nutrient limitation.
The flexibility of zebra mussel feeding behavior and variation in susceptibility among phytoplankton groups to mussel ingestion indicate that invading zebra mussels could alter phytoplankton community composition of lakes and have important ecosystem consequences. The results of this thesis contribute to the growing evidence that predators indirectly affect resource dynamics and food web structure through their non-lethal effects on consumers. The results suggested that zebra mussel can indirectly both reduce and increase the energy transfer efficiency from primary producers to upper trophic levels in the pelagic and benthic food webs, respectively.
sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2007. s. 54
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 361
Emneord
Invasive species, Zebra mussel, Invasion success, Selective feeding, Non-lethal effects of predator, Seston stoichiometry, Delayed fluorescence excitation spectroscopy, Phytoplankton dynamics, Trait-mediated indirect interaction, Ecosystem function
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-8301 (URN)978-91-554-7015-9 (ISBN)
Disputas
2007-12-06, Lindahlssalen, Kärnhuset, EBC, Norbyvägen, Uppsala, 13:00
Opponent
Veileder
2007-11-142007-11-142022-01-28bibliografisk kontrollert