Logo: to the web site of Uppsala University

uu.sePublikasjoner fra Uppsala universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Finite gyroradius effects in the electron outflow of asymmetric magnetic reconnection
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Rymd- och plasmafysik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.ORCID-id: 0000-0002-1046-746X
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
Vise andre og tillknytning
2016 (engelsk)Inngår i: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, nr 13, s. 6724-6733Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We present observations of asymmetric magnetic reconnection showing evidence of electron demagnetization in the electron outflow. The observations were made at the magnetopause by the four Magnetospheric Multiscale (MMS) spacecraft, separated by approximate to 15km. The reconnecting current sheet has negligible guide field, and all four spacecraft likely pass close to the electron diffusion region just south of the X line. In the electron outflow near the X line, all four spacecraft observe highly structured electron distributions in a region comparable to a few electron gyroradii. The distributions consist of a core with T-vertical bar>T and a nongyrotropic crescent perpendicular to the magnetic field. The crescents are associated with finite gyroradius effects of partly demagnetized electrons. These observations clearly demonstrate the manifestation of finite gyroradius effects in an electron-scale reconnection current sheet.

sted, utgiver, år, opplag, sider
2016. Vol. 43, nr 13, s. 6724-6733
Emneord [en]
magnetic reconnection, electron demagnetization, finite gyroradius effects, electron diffusion region
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-304453DOI: 10.1002/2016GL069205ISI: 000380901600006OAI: oai:DiVA.org:uu-304453DiVA, id: diva2:1033006
Forskningsfinansiär
Swedish National Space Board, 23/12:2 175/15Tilgjengelig fra: 2016-10-05 Laget: 2016-10-05 Sist oppdatert: 2017-11-30bibliografisk kontrollert
Inngår i avhandling
1. Electron-scale physics in space plasma: Thin boundaries and magnetic reconnection
Åpne denne publikasjonen i ny fane eller vindu >>Electron-scale physics in space plasma: Thin boundaries and magnetic reconnection
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Most of the observable Universe consists of plasma, a kind of ionized gas that interacts with electric and magnetic fields. Large volumes of space are filled with relatively uniform plasmas that convect with the magnetic field. This is the case for the solar wind, and large parts of planetary magnetospheres, the volumes around the magnetized planets that are dominated by the planet's internal magnetic field. Large plasma volumes in space are often separated by thin extended boundaries. Many small-scale processes in these boundaries mediate large volumes of plasma and energy between the adjacent regions, and can lead to global changes in the magnetic field topology. To understand how large-scale plasma regions are created, maintained, and how they can mix, it is important understand how the processes in the thin boundaries separating them work.

A process in these thin boundaries that may result in large scale changes in magnetic field topology is magnetic reconnection. Magnetic reconnection is a fundamental process that transfers energy from the magnetic field to particles, and occurs both in laboratory and astrophysical plasmas. It is a multi-scale process involving both ions and electrons, but is only partly understood

Space above the Earth's ionosphere is essentially collisionless, meaning that information, energy, and mass transfer have to be mediated through means other than collisions. In a plasma, this can happen through interactions between particles and electrostatic and electromagnetic waves. Instabilities that excites waves can therefore play a crucial role in the energy transfer between fields and particles, and different particle populations, for example between ions and electrons.

In this thesis we have used data from ESA's four Cluster and NASA's four Magnetospheric Multiscale (MMS) satellites to study small-scale – the scale where details of the electron motion becomes important – processes in thin boundaries around Earth. With Cluster, we have made detailed measurements of lower-hybrid waves and electrostatic solitary waves to better understand what role these waves can play in collisionless energy transfer. Here, the use of at least two satellites was crucial to estimate the phase speed of the waves, and associated wavelength, as well as electrostatic potential of the waves. With MMS, we have studied the electron dynamics within thin boundaries undergoing magnetic reconnection, and found that the current is often carried by non-gyrotropic parts of the electron distribution. The non-gyrotropy was caused by finite gyroradius effects due to sharp gradients in the magnetic field and plasma density and temperature. Here, the use of four satellites was crucial to deduce the spatial structure and thickness of the boundaries. Before the MMS mission, these observations of electron dynamics have never been possible in space, due to instrumental limitations of previous missions. All these findings have led to better understanding of both our near-space environment and plasma physics in general.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2016. s. 68
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1453
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-307955 (URN)978-91-554-9755-2 (ISBN)
Disputas
2017-01-20, Polhemsalen, Ångström Laboratory, Lägerhyddsvägen 1, Uppsala, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2016-12-21 Laget: 2016-11-23 Sist oppdatert: 2016-12-28

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Norgren, Cecilia

Søk i DiVA

Av forfatter/redaktør
Norgren, CeciliaGraham, Daniel B.Khotyaintsev, Yuri V.André, MatsVaivads, Andris
Av organisasjonen
I samme tidsskrift
Geophysical Research Letters

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 611 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf