uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Formulation and implementation of stress-driven and/or strain-driven computational homogenization for finite strain
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad mekanik, Byggteknik.
2016 (engelsk)Inngår i: International Journal for Numerical Methods in Engineering, ISSN 0029-5981, E-ISSN 1097-0207, Vol. 107, nr 12, s. 1009-1028Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper, we present a homogenization approach that can be used in the geometrically nonlinear regime for stress-driven and strain-driven homogenization and even a combination of both. Special attention is paid to the straightforward implementation in combination with the finite-element method. The formulation follows directly from the principle of virtual work, the periodic boundary conditions, and the Hill-Mandel principle of macro-homogeneity. The periodic boundary conditions are implemented using the Lagrange multiplier method to link macroscopic strain to the boundary displacements of the computational model of a representative volume element. We include the macroscopic strain as a set of additional degrees of freedom in the formulation. Via the Lagrange multipliers, the macroscopic stress naturally arises as the associated forces' that are conjugate to the macroscopic strain displacements'. In contrast to most homogenization schemes, the second Piola-Kirchhoff stress and Green-Lagrange strain have been chosen for the macroscopic stress and strain measures in this formulation. The usage of other stress and strain measures such as the first Piola-Kirchhoff stress and the deformation gradient is discussed in the Appendix.

sted, utgiver, år, opplag, sider
2016. Vol. 107, nr 12, s. 1009-1028
Emneord [en]
homogenization, implementation, periodic boundary conditions, finite strain, second Piola-Kirchhoff stress, Green-Lagrange strain
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-305336DOI: 10.1002/nme.5198ISI: 000382988400002OAI: oai:DiVA.org:uu-305336DiVA, id: diva2:1037320
Forskningsfinansiär
Swedish Research Council FormasVINNOVASwedish Research CouncilTilgjengelig fra: 2016-10-14 Laget: 2016-10-14 Sist oppdatert: 2017-11-29bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
van Dijk, Nico P.
Av organisasjonen
I samme tidsskrift
International Journal for Numerical Methods in Engineering

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 589 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf