uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A least squares radial basis function partition of unity method for solving PDEs
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.
2017 (engelsk)Inngår i: SIAM Journal on Scientific Computing, ISSN 1064-8275, E-ISSN 1095-7197, Vol. 39, s. A2538-A2563Artikkel i tidsskrift (Fagfellevurdert) Published
sted, utgiver, år, opplag, sider
2017. Vol. 39, s. A2538-A2563
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-316488DOI: 10.1137/17M1118087ISI: 000418659900017OAI: oai:DiVA.org:uu-316488DiVA, id: diva2:1077950
Prosjekter
eSSENCETilgjengelig fra: 2017-11-09 Laget: 2017-03-01 Sist oppdatert: 2018-06-16bibliografisk kontrollert
Inngår i avhandling
1. Localised Radial Basis Function Methods for Partial Differential Equations
Åpne denne publikasjonen i ny fane eller vindu >>Localised Radial Basis Function Methods for Partial Differential Equations
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Radial basis function methods exhibit several very attractive properties such as a high order convergence of the approximated solution and flexibility to the domain geometry. However the method in its classical formulation becomes impractical for problems with relatively large numbers of degrees of freedom due to the ill-conditioning and dense structure of coefficient matrix. To overcome the latter issue we employ a localisation technique, namely a partition of unity method, while the former issue was previously addressed by several authors and was of less concern in this thesis.

In this thesis we develop radial basis function partition of unity methods for partial differential equations arising in financial mathematics and glaciology. In the applications of financial mathematics we focus on pricing multi-asset equity and credit derivatives whose models involve several stochastic factors. We demonstrate that localised radial basis function methods are very effective and well-suited for financial applications thanks to the high order approximation properties that allow for the reduction of storage and computational requirements, which is crucial in multi-dimensional problems to cope with the curse of dimensionality. In the glaciology application we in the first place make use of the meshfree nature of the methods and their flexibility with respect to the irregular geometries of ice sheets and glaciers. Also, we exploit the fact that radial basis function methods are stated in strong form, which is advantageous for approximating velocity fields of non-Newtonian viscous liquids such as ice, since it allows to avoid a full coefficient matrix reassembly within the nonlinear iteration.

In addition to the applied problems we develop a least squares radial basis function partition of unity method that is robust with respect to the node layout. The method allows for scaling to problem sizes of a few hundred thousand nodes without encountering the issue of large condition numbers of the coefficient matrix. This property is enabled by the possibility to control the coefficient matrix condition number by the rate of oversampling and the mode of refinement.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2018. s. 54
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1600
Emneord
Radial basis function, Partition of unity, Computational finance, Option pricing, Credit default swap, Glaciology, Fluid dynamics, Non-Newtonian flow, Anisotropic RBF
HSV kategori
Forskningsprogram
Beräkningsvetenskap med inriktning mot numerisk analys
Identifikatorer
urn:nbn:se:uu:diva-332715 (URN)978-91-513-0157-0 (ISBN)
Disputas
2018-01-19, ITC 2446, Polacksbacken, Lägerhyddsvägen 2, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2017-12-14 Laget: 2017-11-21 Sist oppdatert: 2018-03-08

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Larsson, ElisabethShcherbakov, Victor

Søk i DiVA

Av forfatter/redaktør
Larsson, ElisabethShcherbakov, Victor
Av organisasjonen
I samme tidsskrift
SIAM Journal on Scientific Computing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 580 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf