uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Influence of applied corneal endothelium image segmentation techniques on the clinical parameters
AGH Univ Sci & Technol, Dept Geoinformat & Appl Comp Sci, Krakow, Poland..
Silesian Tech Univ, Inst Informat, Gliwice, Poland..
Pomeranian Med Univ, Dept Ophthalmol, Szczecin, Poland.;Sygehus Sonderjylland, Dept Ophthalmol, Sonderborg, Denmark..
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
Vise andre og tillknytning
2017 (engelsk)Inngår i: Computerized Medical Imaging and Graphics, ISSN 0895-6111, E-ISSN 1879-0771, Vol. 55, s. 13-27Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The corneal endothelium state is verified on the basis of an in vivo specular microscope image from which the shape and density of cells are exploited for data description. Due to the relatively low image quality resulting from a high magnification of the living, non-stained tissue, both manual and automatic analysis of the data is a challenging task. Although, many automatic or semi-automatic solutions have already been introduced, all of them are prone to inaccuracy. This work presents a comparison of four methods (fully-automated or semi-automated) for endothelial cell segmentation, all of which represent a different approach to cell segmentation; fast robust stochastic watershed (FRSW), KH method, active contours solution (SNAKE), and TOPCON ImageNET. Moreover, an improvement framework is introduced which aims to unify precise cell border location in images preprocessed with differing techniques. Finally, the influence of the selected methods on clinical parameters is examined, both with and without the improvement framework application. The experiments revealed that although the image segmentation approaches differ, the measures calculated for clinical parameters are in high accordance when CV (coefficient of variation), and CVSL (coefficient of variation of cell sides length) are considered. Higher variation was noticed for the H (hexagonality) metric. Utilisation of the improvement framework assured better repeatability of precise endothelial cell border location between the methods while diminishing the dispersion of clinical parameter values calculated for such images. Finally, it was proven statistically that the image processing method applied for endothelial cell analysis does not influence the ability to differentiate between the images using medical parameters.

sted, utgiver, år, opplag, sider
2017. Vol. 55, s. 13-27
Emneord [en]
The corneal endothelium cells, Non-contact specular microscope, Image processing, Segmentation
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-316420DOI: 10.1016/j.compmedimag.2016.07.010ISI: 000392685900003PubMedID: 27553657OAI: oai:DiVA.org:uu-316420DiVA, id: diva2:1077986
Tilgjengelig fra: 2017-03-02 Laget: 2017-03-02 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Selig, Bettina

Søk i DiVA

Av forfatter/redaktør
Selig, Bettina
Av organisasjonen
I samme tidsskrift
Computerized Medical Imaging and Graphics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 321 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf