uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dose painting by numbers based on retrospectively determined recurrence probabilities
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk strålningsvetenskap.ORCID-id: 0000-0002-4603-6338
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk strålningsvetenskap.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk strålningsvetenskap.
2017 (engelsk)Inngår i: Radiotherapy and Oncology, ISSN 0167-8140, E-ISSN 1879-0887, Vol. 122, nr 2, s. 236-241Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Background and purpose: The aim of this study is to derive "dose painting by numbers" prescriptions from retrospectively observed recurrence volumes in a patient group treated with conventional radiotherapy for head and neck squamous cell carcinoma. Materials and methods: The spatial relation between retrospectively observed recurrence volumes and pre-treatment standardized uptake values (SUV) from fluorodeoxyglucose positron emission tomography (FDG-PET) imaging was determined. Based on this information we derived SUV driven dose-response functions and used these to optimize ideal dose redistributions under the constraint of equal average dose to the tumor volumes as for a conventional treatment. The response functions were also implemented into a treatment planning system for realistic dose optimization. Results: The calculated tumor control probabilities (TCP) increased between 0.1-14.6% by the ideal dose redistributions for all included patients, where patients with larger and more heterogeneous tumors got greater increases than smaller and more homogeneous tumors. Conclusions: Dose painting prescriptions can be derived from retrospectively observed recurrence volumes spatial relation to pre-treatment FDG-PET image data. The ideal dose redistributions could significantly increase the TCP for patients with large tumor volumes and large spread in SUV from FDG-PET. The results yield a basis for prospective studies to determine the clinical value for dose painting of head and neck squamous cell carcinomas.

sted, utgiver, år, opplag, sider
ELSEVIER IRELAND LTD , 2017. Vol. 122, nr 2, s. 236-241
Emneord [en]
Dose painting, Dose painting by numbers, Dose painting optimization, Head and neck cancer, FDG-PET/CT
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-320782DOI: 10.1016/j.radonc.2016.09.007ISI: 000395607300011PubMedID: 27707505OAI: oai:DiVA.org:uu-320782DiVA, id: diva2:1090744
Forskningsfinansiär
Swedish Cancer Society, 130632
Merknad

Correction in: RADIOTHERAPY AND ONCOLOGY, Volume: 131, Pages: 243-243, DOI: 10.1016/j.radonc.2018.11.004

Tilgjengelig fra: 2017-04-25 Laget: 2017-04-25 Sist oppdatert: 2019-10-14bibliografisk kontrollert
Inngår i avhandling
1. Dose painting: Can radiotherapy be improved with image driven dose-responses derived from retrospective radiotherapy data?
Åpne denne publikasjonen i ny fane eller vindu >>Dose painting: Can radiotherapy be improved with image driven dose-responses derived from retrospective radiotherapy data?
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The main aim of curative radiotherapy for cancer is to prescribe and deliver doses that eradicate the tumor and spare the normal healthy tissues. Radiotherapy is commonly performed by delivering a homogeneous radiation dose to the tumor. However, concern have been raised that functional imaging methods such as magnetic resonance imaging (MRI) and positron emission tomography (PET) can provide a basis for prescribing heterogeneous doses - higher doses in malignant regions of the tumor and less dose where the tumor is less malignant. This form of radiotherapy is called “dose painting” and has the aim of utilizing the radiant energy as efficiently as possible to increase the tumor control probability (TCP) and to reduce the risk for unwanted side effects of the neighboring normal tissues.

In this project we have studied how dose painting prescriptions could be derived through retrospectively analyzing pre-RT image data and post-RT outcomes for two different patient groups: one diagnosed with head and neck cancer with pre-RT fluorodeoxyglucose (18F-FDG) PET image data; and one patient group diagnosed with prostate cancer with pre-RT Gleason score data that were constructed to be mapped from apparent diffusion coefficient (ADC) data acquired from MRI. The resulting dose painting prescriptions for each of these diagnoses indicated that the TCP could be increased without increasing the average dose to the tumor volumes as compared to homogeneous dose treatments. These TCP increases were more noticeable when the tumors were larger and more heterogeneous than for smaller and more homogeneous tumors.

We have also studied the potential to realize TCP increases with dose painting in comparison to homogeneous dose treatments by optimizing clinically deliverable dose painting plans for both diagnoses, i.e. head and neck cancer and prostate cancer. These plans were optimized with minimax optimization that aimed to maximize a robust TCP increase by considering uncertainties of the patient geometry. These plan optimizations indicated that the TCP compared to homogeneous dose treatments was increasing and robust regarding uncertainties of the patient geometry.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2019. s. 56
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1603
Emneord
Radiotherapy, functional imaging, dose painting, dose painting by numbers, robust optimization
HSV kategori
Forskningsprogram
Medicinsk radiofysik
Identifikatorer
urn:nbn:se:uu:diva-393418 (URN)978-91-513-0776-3 (ISBN)
Disputas
2019-11-29, Hedstrandsalen, Akademiska Sjukhuset, Ingång 70, Uppsala, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2019-11-08 Laget: 2019-10-14 Sist oppdatert: 2019-11-08

Open Access i DiVA

fulltext(1024 kB)212 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1024 kBChecksum SHA-512
f7b756dce47d4a3363cdcdcab45e8af1108a221a6282928cacfff9935f0dca3ec25b930ed028f7104c7ea4714b8938c448c134e6f536877ac3c5fc9fe1e8b9ab
Type fulltextMimetype application/pdf
errata(444 kB)1 nedlastinger
Filinformasjon
Fil ERRATA01.pdfFilstørrelse 444 kBChecksum SHA-512
a40777a46c87a28dfa1904bde954a447fa0a21e1fbf63d09acc7c62f72e6c59af1e62948754b4e43ba959dfc32d8545d9e49c6b76afb1032696674fcc9df3fa1
Type errataMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Grönlund, EricJohansson, SilviaMontelius, AndersAhnesjö, Anders

Søk i DiVA

Av forfatter/redaktør
Grönlund, EricJohansson, SilviaMontelius, AndersAhnesjö, Anders
Av organisasjonen
I samme tidsskrift
Radiotherapy and Oncology

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 212 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 476 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf