uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning
Imperial Coll London, Dept Phys, London SW7 2AZ, England..
Imperial Coll London, Dept Phys, London SW7 2AZ, England..
Imperial Coll London, Dept Phys, London SW7 2AZ, England..
Imperial Coll London, Dept Phys, London SW7 2AZ, England..
Vise andre og tillknytning
2017 (engelsk)Inngår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 8, artikkel-id 15461Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy, we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. This opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.

sted, utgiver, år, opplag, sider
Nature Publishing Group, 2017. Vol. 8, artikkel-id 15461
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-327226DOI: 10.1038/ncomms15461ISI: 000402745000001PubMedID: 28580940OAI: oai:DiVA.org:uu-327226DiVA, id: diva2:1136026
Tilgjengelig fra: 2017-08-25 Laget: 2017-08-25 Sist oppdatert: 2017-11-29bibliografisk kontrollert

Open Access i DiVA

fulltext(936 kB)117 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 936 kBChecksum SHA-512
e969633eabba6bb0fe7bbd13342f4ec2bd209dcd9457542f88c10132e80ac1d0bd713584e077192ae0cd741274688478f2f2a69f9c6b3ab1c0fcfc23331d4173
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Agåker, M.Dong, M.Mucke, M.Rubensson, J-E.Vacher, M.

Søk i DiVA

Av forfatter/redaktør
Agåker, M.Dong, M.Mucke, M.Rubensson, J-E.Vacher, M.
Av organisasjonen
I samme tidsskrift
Nature Communications

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 117 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 356 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf