uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Combinatorial Approach to Induce Sensory Axon Regeneration into the Dorsal Root Avulsed Spinal Cord
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Regenerativ neurobiologi. (Regenerative Neurobiology)ORCID-id: 0000-0001-5602-0850
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Regenerativ neurobiologi. (Regenerative Neurobiology)
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Regenerativ neurobiologi. (Regenerative Neurobiology)
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Funktionell farmakologi. (Molecular Neuropharmacology)
Vise andre og tillknytning
2017 (engelsk)Inngår i: Stem Cells and Development, ISSN 1547-3287, E-ISSN 1557-8534, Vol. 26, nr 14, s. 1065-1077Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Spinal root injuries result in newly formed glial scar formation, which prevents regeneration of sensory axons causing permanent sensory loss. Previous studies showed that delivery of trophic factors or implantation of human neural progenitor cells supports sensory axon regeneration and partly restores sensory functions. In this study, we elucidate mechanisms underlying stem cell-mediated ingrowth of sensory axons after dorsal root avulsion (DRA). We show that human spinal cord neural stem/progenitor cells (hscNSPC), and also, mesoporous silica particles loaded with growth factor mimetics (MesoMIM), supported sensory axon regeneration. However, when hscNSPC and MesoMIM were combined, sensory axon regeneration failed. Morphological and tracing analysis showed that sensory axons grow through the newly established glial scar along "bridges" formed by migrating stem cells. Coimplantation of MesoMIM prevented stem cell migration, "bridges" were not formed, and sensory axons failed to enter the spinal cord. MesoMIM applied alone supported sensory axons ingrowth, but without affecting glial scar formation. In vitro, the presence of MesoMIM significantly impaired migration of hscNSPC without affecting their level of differentiation. Our data show that (1) the ability of stem cells to migrate into the spinal cord and organize cellular "bridges" in the newly formed interface is crucial for successful sensory axon regeneration, (2) trophic factor mimetics delivered by mesoporous silica may be a convenient alternative way to induce sensory axon regeneration, and (3) a combinatorial approach of individually beneficial components is not necessarily additive, but can be counterproductive for axonal growth.

sted, utgiver, år, opplag, sider
2017. Vol. 26, nr 14, s. 1065-1077
Emneord [en]
biomimetics, neural stem cells, spinal cord regeneration, stem cell transplantation
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-328587DOI: 10.1089/scd.2017.0019ISI: 000405071200005PubMedID: 28562227OAI: oai:DiVA.org:uu-328587DiVA, id: diva2:1136351
Forskningsfinansiär
Stiftelsen Olle Engkvist ByggmästareSwedish Research Council, 20716
Merknad

De två första författarna delar förstaförfattarskapet.

Tilgjengelig fra: 2017-08-28 Laget: 2017-08-28 Sist oppdatert: 2018-01-13bibliografisk kontrollert
Inngår i avhandling
1. Neural progenitors for sensory and motor repair
Åpne denne publikasjonen i ny fane eller vindu >>Neural progenitors for sensory and motor repair
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Injury and neurodegenerative conditions of the spinal cord can lead to paralysis and loss of sensation. Cell therapeutic approaches can restore sensory innervation of the spinal cord following injury and protect spinal cord cells from degeneration. This thesis primarily focuses on the restoration of deaffarented sensory fibres following injury to the dorsal root and spinal cord. These injuries lead to the formation of a non-permissive glial scar that prevents sensory axons from reinnervating spinal cord targets. It takes advantage of a dorsal root injury model that closely mimics spinal root avulsion injuries occurring in humans. In the first part of the thesis, three different neural progenitor types from human or murine sources are tested for their regenerative properties following their transplantation to the site of dorsal root avulsion injury. In the second part, the ability of murine neural progenitors to protect spinal motor neurons from a neurodegenerative process is tested.

In the first original research article, I show that human embryonic stem cell derived neural progenitors are able to restore sensorimotor functions, mediated by the formation of a tissue bridge that allows ingrowth of sensory axons into the spinal cord. In the second research article, I present that murine boundary cap neural crest stem cells, a special type of neural progenitor that governs the entry of sensory axons into the spinal cord during development, are unable to form a permissive tissue bridge. This is possibly caused by the contribution of transplant derived ingrowth non-permissive glial cells. In the third research article, I show that human neural progenitors derived from foetal sources are capable of stimulating sensory ingrowth and that they ameliorate the glial scar. When this approach is combined with the delivery of sensory outgrowth stimulating neurotrophic factors, these cells fail to form a permissive tissue bridge and fail to modify the glial scar. In the final research article, murine boundary cap neural crest stem cells are shown to protect motor neurons, which harbor an amyotrophic lateral sclerosis causing mutation, from oxidative stress. Oxidative stress is a pathological component of amyotrophic lateral sclerosis in human patients.

Taken together, this thesis provides first evidence that sensory regeneration following a spinal root avulsion injury can be achieved by transplantation of human neural progenitors. In addition, it introduces murine boundary cap neural crest stem cells as interesting candidates for the cell therapeutic treatment of amyotrophic lateral sclerosis.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2017. s. 67
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1365
Emneord
Regenerative Neurobiology, Stem cells, Sensory regeneration, Spinal cord injury, Amyotrophic Lateral Sclerosis, Neurodegeneration, Oxidative Stress
HSV kategori
Forskningsprogram
Medicinsk vetenskap
Identifikatorer
urn:nbn:se:uu:diva-328590 (URN)978-91-513-0058-0 (ISBN)
Disputas
2017-10-23, B/C8:305, Husargatan 3, Uppsala, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2017-10-02 Laget: 2017-08-31 Sist oppdatert: 2018-01-13

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Hoeber, JanKönig, NiclasTrolle, CarlLekholm, EmiliaFredriksson, RobertAldskogius, HåkanKozlova, Elena

Søk i DiVA

Av forfatter/redaktør
Hoeber, JanKönig, NiclasTrolle, CarlLekholm, EmiliaFredriksson, RobertAldskogius, HåkanKozlova, Elena
Av organisasjonen
I samme tidsskrift
Stem Cells and Development

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 342 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf