uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Pricing derivatives under multiple stochastic factors by localized radial basis function methods
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.ORCID-id: 0000-0003-3164-5242
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.
2017 (engelsk)Inngår i: Computing Research Repository, nr 1711.09852Artikkel i tidsskrift (Annet vitenskapelig) Submitted
sted, utgiver, år, opplag, sider
2017. nr 1711.09852
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-333468OAI: oai:DiVA.org:uu-333468DiVA, id: diva2:1156673
Prosjekter
eSSENCETilgjengelig fra: 2017-11-27 Laget: 2017-11-14 Sist oppdatert: 2018-08-22bibliografisk kontrollert
Inngår i avhandling
1. Localised Radial Basis Function Methods for Partial Differential Equations
Åpne denne publikasjonen i ny fane eller vindu >>Localised Radial Basis Function Methods for Partial Differential Equations
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Radial basis function methods exhibit several very attractive properties such as a high order convergence of the approximated solution and flexibility to the domain geometry. However the method in its classical formulation becomes impractical for problems with relatively large numbers of degrees of freedom due to the ill-conditioning and dense structure of coefficient matrix. To overcome the latter issue we employ a localisation technique, namely a partition of unity method, while the former issue was previously addressed by several authors and was of less concern in this thesis.

In this thesis we develop radial basis function partition of unity methods for partial differential equations arising in financial mathematics and glaciology. In the applications of financial mathematics we focus on pricing multi-asset equity and credit derivatives whose models involve several stochastic factors. We demonstrate that localised radial basis function methods are very effective and well-suited for financial applications thanks to the high order approximation properties that allow for the reduction of storage and computational requirements, which is crucial in multi-dimensional problems to cope with the curse of dimensionality. In the glaciology application we in the first place make use of the meshfree nature of the methods and their flexibility with respect to the irregular geometries of ice sheets and glaciers. Also, we exploit the fact that radial basis function methods are stated in strong form, which is advantageous for approximating velocity fields of non-Newtonian viscous liquids such as ice, since it allows to avoid a full coefficient matrix reassembly within the nonlinear iteration.

In addition to the applied problems we develop a least squares radial basis function partition of unity method that is robust with respect to the node layout. The method allows for scaling to problem sizes of a few hundred thousand nodes without encountering the issue of large condition numbers of the coefficient matrix. This property is enabled by the possibility to control the coefficient matrix condition number by the rate of oversampling and the mode of refinement.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2018. s. 54
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1600
Emneord
Radial basis function, Partition of unity, Computational finance, Option pricing, Credit default swap, Glaciology, Fluid dynamics, Non-Newtonian flow, Anisotropic RBF
HSV kategori
Forskningsprogram
Beräkningsvetenskap med inriktning mot numerisk analys
Identifikatorer
urn:nbn:se:uu:diva-332715 (URN)978-91-513-0157-0 (ISBN)
Disputas
2018-01-19, ITC 2446, Polacksbacken, Lägerhyddsvägen 2, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2017-12-14 Laget: 2017-11-21 Sist oppdatert: 2018-03-08
2. Radial Basis Function generated Finite Difference Methods for Pricing of Financial Derivatives
Åpne denne publikasjonen i ny fane eller vindu >>Radial Basis Function generated Finite Difference Methods for Pricing of Financial Derivatives
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The purpose of this thesis is to present state of the art in radial basis function generated finite difference (RBF-FD) methods for pricing of financial derivatives. This work provides a detailed overview of RBF-FD properties and challenges that arise when the RBF-FD methods are used in financial applications.

Across the financial markets of the world, financial derivatives such as futures, options, and others, are traded in substantial volumes. Knowing the prices of those financial instruments at any given time is of utmost importance. Many of the theoretical pricing models for financial derivatives can be represented using multidimensional PDEs, which are in most cases analytically unsolvable.

We present RBF-FD as a recent numerical method with the potential to efficiently approximate solutions of PDEs in finance. As its name suggests, the RBF-FD method is of a finite difference (FD) type, from the radial basis function (RBF) group of methods. When used to approximate differential operators, the method is featured with a sparse differentiation matrix, and it is relatively simple to implement — like the standard FD methods. Moreover, the method is mesh-free, meaning that it does not require a structured discretization of the computational domain, and it is of a customizable order of accuracy — which are the features it inherits from the global RBF approximations.

The results in this thesis demonstrate how to successfully apply RBF-FD to different pricing problems by studying the effects of RBF shape parameters for Gaussian RBF-FD approximations, improving the approximation of differential operators in multiple dimensions by using polyharmonic splines augmented with polynomials, constructing suitable node layouts, and smoothing of the initial data to enable high order convergence of the method. Finally, we compare RBF-FD with other available methods on a plethora of pricing problems to form an objective image of the method’s performance.

Future development of RBF-FD is expected to result in a solid mesh-free high order method for multi-dimensional PDEs, that can be used together with dimension reduction techniques to efficiently solve problems of high dimensionality that we often encounter in finance.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2018. s. 63
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1702
Emneord
Radial basis function, Finite difference, Computational finance, Pricing of financial derivatives, Option pricing, Partial differential equation
HSV kategori
Forskningsprogram
Beräkningsvetenskap med inriktning mot numerisk analys
Identifikatorer
urn:nbn:se:uu:diva-357220 (URN)978-91-513-0403-8 (ISBN)
Disputas
2018-09-28, ITC 2446, Polacksbacken, Lägerhyddsvägen 2, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-09-06 Laget: 2018-08-14 Sist oppdatert: 2018-10-02

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

https://arxiv.org/abs/1711.09852

Personposter BETA

Milovanović, SlobodanShcherbakov, Victor

Søk i DiVA

Av forfatter/redaktør
Milovanović, SlobodanShcherbakov, Victor
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 132 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf