uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Monitoring LixFeSO4F (x = 1, 0.5, 0) Phase Distributions in Operando To Determine Reaction Homogeneity in Porous Battery Electrodes
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.ORCID-id: 0000-0003-2737-4670
Scania CV AB, Södertälje, Sweden.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.ORCID-id: 0000-0002-3598-3903
Vise andre og tillknytning
2017 (engelsk)Inngår i: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 29, nr 17, s. 7159-7169Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Increasing the energy and power density simultaneously remains a major challenge for improving electrochemical energy storage devices such as Li-ion batteries. Understanding the underlying processes in operating electrodes is decisive to improve their performance. Here, an extension of an in operando X-ray diffraction technique is presented, wherein monitoring the degree of coexistence between crystalline phases in multiphase systems is used to investigate reaction homogeneity in Li-ion batteries. Thereby, a less complicated experimental setup using commercially available laboratory equipment could be employed. By making use of the intrinsic structural properties of tavorite type LiFeSO4F, a promising cathode material for Li-ion batteries, new insights into its nonequilibrium behavior are gained. Differences in the reaction mechanism upon charge and discharge are shown; the influence of adequate electronic wiring for the cycling stability is demonstrated, and the effect of solid state transport on rate performance is highlighted. The methodology is an alternative and complementary approach to the expensive and demanding techniques commonly employed for time-resolved studies of structural changes in operating battery electrodes. The multiphase behavior of LiFeSO4F is commonly observed for other insertion type electrode materials, making the methodology transferable to other new energy storage materials. By expanding the possibilities for investigating complex processes in operating batteries to a larger community, faster progress in both electrode development and fundamental material research can be realized.

sted, utgiver, år, opplag, sider
American Chemical Society , 2017. Vol. 29, nr 17, s. 7159-7169
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-338351DOI: 10.1021/acs.chemmater.7b01019ISI: 000410868600017OAI: oai:DiVA.org:uu-338351DiVA, id: diva2:1171965
Tilgjengelig fra: 2018-01-08 Laget: 2018-01-08 Sist oppdatert: 2018-01-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Blidberg, AndreasGustafsson, TorbjörnTengstedt, CarlBjörefors, FredrikBrant, William R.

Søk i DiVA

Av forfatter/redaktør
Blidberg, AndreasGustafsson, TorbjörnTengstedt, CarlBjörefors, FredrikBrant, William R.
Av organisasjonen
I samme tidsskrift
Chemistry of Materials

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 92 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf