uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
TaskUniVerse: A Task-Based Unified Interface for Versatile Parallel Execution
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Tillämpad beräkningsvetenskap.
2018 (engelsk)Inngår i: Parallel Processing and Applied Mathematics: Part I, Springer, 2018, s. 169-184Konferansepaper, Publicerat paper (Fagfellevurdert)
sted, utgiver, år, opplag, sider
Springer, 2018. s. 169-184
Serie
Lecture Notes in Computer Science ; 10777
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-338836DOI: 10.1007/978-3-319-78024-5_16ISI: 000458563300016ISBN: 978-3-319-78023-8 (tryckt)OAI: oai:DiVA.org:uu-338836DiVA, id: diva2:1173782
Konferanse
PPAM 2017
Prosjekter
eSSENCETilgjengelig fra: 2018-03-23 Laget: 2018-01-14 Sist oppdatert: 2019-03-14bibliografisk kontrollert
Inngår i avhandling
1. Advances in Task-Based Parallel Programming for Distributed Memory Architectures
Åpne denne publikasjonen i ny fane eller vindu >>Advances in Task-Based Parallel Programming for Distributed Memory Architectures
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

It has become common knowledge that parallel programming is needed for scientific applications, particularly for running large scale simulations. Different programming models are introduced for simplifying parallel programming, while enabling an application to use the full computational capacity of the hardware. In task-based programming, all the variables in the program are abstractly viewed as data. Parallelism is provided by partitioning the data. A task is a collection of operations performed on input data to generate output data. In distributed memory environments, the data is distributed over the computational nodes (or processes), and is communicated when a task needs remote data.

This thesis discusses advanced techniques in distributed task-based parallel programming, implemented in the DuctTeip software library. DuctTeip uses MPI (Message Passing Interface) for asynchronous inter-process communication and Pthreads for shared memory parallelization within the processes. The data dependencies that determine which subsets of tasks can be executed in parallel are extracted from information about the data accesses (input or output) of the tasks. A versioning system is used internally to represent the task-data dependencies efficiently. A hierarchical partitioning of tasks and data allows for independent optimization of the size of computational tasks and the size of communicated data. A data listener technique is used to manage communication efficiently.

DuctTeip provides an algorithm independent dynamic load balancing functionality. Redistributing tasks from busy processes to idle processes dynamically can provide an overall shorter execution time. A random search method with high probability of success is employed for locating idle/busy nodes.

The advantage of the abstract view of tasks and data is exploited in a unified programming interface, which provides a standard for task-based frameworks to decouple framework development from application development. The interface can be used for collaboration between different frameworks in running an application program efficiently on different hardware.

To evaluate the DuctTeip programming model, applications such as Cholesky factorization, a time-dependent PDE solver for the shallow water equations, and the fast multipole method have been implemented using DuctTeip. Experiments show that DuctTeip provides both scalability and performance. Comparisons with similar frameworks such as StarPU, OmpSs, and PaRSEC show competitive results.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2018. s. 42
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1621
Emneord
parallel programming, task-based programming, distributed memory system, scientific computing, hierarchical data, hierarchical tasks
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-338838 (URN)978-91-513-0209-6 (ISBN)
Disputas
2018-03-02, ITC/2446, ITC, Lägerhyddsvägen 2, Uppsala, 10:00 (engelsk)
Opponent
Veileder
Prosjekter
UPMARC
Tilgjengelig fra: 2018-02-09 Laget: 2018-01-14 Sist oppdatert: 2019-02-25

Open Access i DiVA

fulltext(564 kB)62 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 564 kBChecksum SHA-512
1f0ffc98b0c566cb236b644ec645f4124514d04d8ddacffc9e1fd7d1cfd4f7c87b083ce101c7967d301284b1e777094854122c5810d2cb071d333d42cf7b9bb9
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Zafari, Afshin

Søk i DiVA

Av forfatter/redaktør
Zafari, Afshin
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 62 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 127 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf