uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
High-order numerical methods for 2D parabolic problems in single and composite domains
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.ORCID-id: 0000-0002-4694-4731
Vise andre og tillknytning
2018 (engelsk)Inngår i: Journal of Scientific Computing, ISSN 0885-7474, E-ISSN 1573-7691, Vol. 76, s. 812-847Artikkel i tidsskrift (Fagfellevurdert) Published
sted, utgiver, år, opplag, sider
2018. Vol. 76, s. 812-847
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-339130DOI: 10.1007/s10915-017-0637-yISI: 000436253800006OAI: oai:DiVA.org:uu-339130DiVA, id: diva2:1174826
Tilgjengelig fra: 2018-01-10 Laget: 2018-01-16 Sist oppdatert: 2018-09-09bibliografisk kontrollert
Inngår i avhandling
1. High Order Cut Finite Element Methods for Wave Equations
Åpne denne publikasjonen i ny fane eller vindu >>High Order Cut Finite Element Methods for Wave Equations
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis considers wave propagation problems solved using finite element methods where a boundary or interface of the domain is not aligned with the computational mesh. Such methods are usually referred to as cut or immersed methods. The motivation for using immersed methods for wave propagation comes largely from scattering problems when the geometry of the domain is not known a priori. For wave propagation problems, the amount of computational work per dispersion error is generally lower when using a high order method. For this reason, this thesis aims at studying high order immersed methods.

Nitsche's method is a common way to assign boundary or interface conditions in immersed finite element methods. Here, penalty terms that are consistent with the boundary/interface conditions are added to the weak form. This requires that special quadrature rules are constructed on the intersected elements, which take the location of the immersed boundary/interface into account. A common problem for all immersed methods is small cuts occurring between the elements in the mesh and the computational domain. A suggested way to remedy this is to add terms penalizing jumps in normal derivatives over the faces of the intersected elements.

Paper I and Paper II consider the acoustic wave equation, using first order elements in Paper I, and using higher order elements in Paper II. High order elements are then used for the elastic wave equation in Paper III. Papers I to III all use continuous Galerkin, Nitsche's method, and jump-stabilization. Paper IV compares the errors of this type of cut finite element method with two other numerical methods. One result from Paper II is that the added jump-stabilization results in a mass matrix with a high condition number. This motivates the investigation of alternatives. Paper V considers a hybridizable discontinuous Galerkin method. This paper investigates to what extent local time stepping in combination with cell-merging can be used to overcome the problem of small cuts.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2018. s. 37
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1656
Emneord
Cut finite element, Wave equation, Immersed, Fictitious domain
HSV kategori
Forskningsprogram
Beräkningsvetenskap med inriktning mot numerisk analys
Identifikatorer
urn:nbn:se:uu:diva-347439 (URN)978-91-513-0300-0 (ISBN)
Disputas
2018-05-25, ITC 2446, Lägerhyddsvägen 2, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-04-27 Laget: 2018-04-02 Sist oppdatert: 2018-10-08

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Sticko, SimonWang, SiyangKreiss, Gunilla

Søk i DiVA

Av forfatter/redaktør
Ludvigsson, GustavSticko, SimonWang, SiyangKreiss, Gunilla
Av organisasjonen
I samme tidsskrift
Journal of Scientific Computing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 176 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf