uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Expression robust 3D face landmarking using thresholded surface normals
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
Univ Bath, Dept Elect & Elect Engn, Bath, Avon, England.
2018 (engelsk)Inngår i: Pattern Recognition, ISSN 0031-3203, E-ISSN 1873-5142, Vol. 78, s. 120-132Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

3D face recognition is an increasing popular modality for biometric authentication, for example in the iPhoneX. Landmarking plays a significant role in region based face recognition algorithms. The accuracy and consistency of the landmarking will directly determine the effectiveness of feature extraction and hence the overall recognition performance. While surface normals have been shown to provide high performing features for face recognition, their use in landmarking has not been widely explored. To this end, a new 3D facial landmarking algorithm based on thresholded surface normal maps is proposed, which is applicable to widely used 3D face databases. The benefits of employing surface normals are demonstrated for both facial roll and yaw rotation calibration and nasal landmarks localization. Results on the Bosphorus, FRGC and BU-3DFE databases show that the detected landmarks possess high within class consistency and accuracy under different expressions. For several key landmarks the performance achieved surpasses that of state-of-the-art techniques and is also training free and computationally efficient. The use of surface normals therefore provides a useful representation of the 3D surface and the proposed landmarking algorithm provides an effective approach to localising the key nasal landmarks.

sted, utgiver, år, opplag, sider
ELSEVIER SCI LTD , 2018. Vol. 78, s. 120-132
Emneord [en]
3D face landmarking, Surface normals
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-353096DOI: 10.1016/j.patcog.2018.01.011ISI: 000428490900009OAI: oai:DiVA.org:uu-353096DiVA, id: diva2:1221581
Tilgjengelig fra: 2018-06-20 Laget: 2018-06-20 Sist oppdatert: 2018-06-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Gao, Jiangning
Av organisasjonen
I samme tidsskrift
Pattern Recognition

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 82 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf