uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
BENCHOP–SLV: The BENCHmarking project in Option Pricing – Stochastic and local volatility problems
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.ORCID-id: 0000-0002-4835-2350
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.ORCID-id: 0000-0003-3164-5242
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Tillämpad beräkningsvetenskap.ORCID-id: 0000-0003-1154-9587
Vise andre og tillknytning
2019 (engelsk)Inngår i: International Journal of Computer Mathematics, ISSN 0020-7160, E-ISSN 1029-0265, Vol. 96, s. 1910-1923Artikkel i tidsskrift (Fagfellevurdert) Published
sted, utgiver, år, opplag, sider
2019. Vol. 96, s. 1910-1923
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-357218DOI: 10.1080/00207160.2018.1544368ISI: 000475440700002OAI: oai:DiVA.org:uu-357218DiVA, id: diva2:1238523
Prosjekter
eSSENCETilgjengelig fra: 2018-11-07 Laget: 2018-08-14 Sist oppdatert: 2019-08-29bibliografisk kontrollert
Inngår i avhandling
1. Radial Basis Function generated Finite Difference Methods for Pricing of Financial Derivatives
Åpne denne publikasjonen i ny fane eller vindu >>Radial Basis Function generated Finite Difference Methods for Pricing of Financial Derivatives
2018 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The purpose of this thesis is to present state of the art in radial basis function generated finite difference (RBF-FD) methods for pricing of financial derivatives. This work provides a detailed overview of RBF-FD properties and challenges that arise when the RBF-FD methods are used in financial applications.

Across the financial markets of the world, financial derivatives such as futures, options, and others, are traded in substantial volumes. Knowing the prices of those financial instruments at any given time is of utmost importance. Many of the theoretical pricing models for financial derivatives can be represented using multidimensional PDEs, which are in most cases analytically unsolvable.

We present RBF-FD as a recent numerical method with the potential to efficiently approximate solutions of PDEs in finance. As its name suggests, the RBF-FD method is of a finite difference (FD) type, from the radial basis function (RBF) group of methods. When used to approximate differential operators, the method is featured with a sparse differentiation matrix, and it is relatively simple to implement — like the standard FD methods. Moreover, the method is mesh-free, meaning that it does not require a structured discretization of the computational domain, and it is of a customizable order of accuracy — which are the features it inherits from the global RBF approximations.

The results in this thesis demonstrate how to successfully apply RBF-FD to different pricing problems by studying the effects of RBF shape parameters for Gaussian RBF-FD approximations, improving the approximation of differential operators in multiple dimensions by using polyharmonic splines augmented with polynomials, constructing suitable node layouts, and smoothing of the initial data to enable high order convergence of the method. Finally, we compare RBF-FD with other available methods on a plethora of pricing problems to form an objective image of the method’s performance.

Future development of RBF-FD is expected to result in a solid mesh-free high order method for multi-dimensional PDEs, that can be used together with dimension reduction techniques to efficiently solve problems of high dimensionality that we often encounter in finance.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2018. s. 63
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1702
Emneord
Radial basis function, Finite difference, Computational finance, Pricing of financial derivatives, Option pricing, Partial differential equation
HSV kategori
Forskningsprogram
Beräkningsvetenskap med inriktning mot numerisk analys
Identifikatorer
urn:nbn:se:uu:diva-357220 (URN)978-91-513-0403-8 (ISBN)
Disputas
2018-09-28, ITC 2446, Polacksbacken, Lägerhyddsvägen 2, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-09-06 Laget: 2018-08-14 Sist oppdatert: 2018-10-02

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

von Sydow, LinaMilovanović, SlobodanLarsson, ElisabethShcherbakov, Victor

Søk i DiVA

Av forfatter/redaktør
von Sydow, LinaMilovanović, SlobodanLarsson, ElisabethShcherbakov, Victor
Av organisasjonen
I samme tidsskrift
International Journal of Computer Mathematics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 299 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf