uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Distance Functions Based on Multiple Types of Weighted Steps Combined with Neighborhood Sequences
Eastern Mediterranean Univ, Dept Math, Mersin 10, Famagusta, North Cyprus, Turkey.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.ORCID-id: 0000-0001-7764-1787
Univ Nantes, LS2N, UMR, CNRS 6004, Nantes, France.
2018 (engelsk)Inngår i: Journal of Mathematical Imaging and Vision, ISSN 0924-9907, E-ISSN 1573-7683, Vol. 60, nr 8, s. 1209-1219Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper, we present a general framework for digital distance functions, defined as minimal cost paths, on the square grid. Each path is a sequence of pixels, where any two consecutive pixels are adjacent and associated with a weight. The allowed weights between any two adjacent pixels along a path are given by a weight sequence, which can hold an arbitrary number of weights. We build on our previous results, where only two or three unique weights are considered, and present a framework that allows any number of weights. We show that the rotational dependency can be very low when as few as three or four unique weights are used. Moreover, by using n weights, the Euclidean distance can be perfectly obtained on the perimeter of a square with side length 2n. A sufficient condition for weight sequences to provide metrics is proven.

sted, utgiver, år, opplag, sider
2018. Vol. 60, nr 8, s. 1209-1219
Emneord [en]
Distance functions, Weight sequences, Neighborhood sequences, Chamfer distances, Approximation of Euclidean distance
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-364167DOI: 10.1007/s10851-018-0805-1ISI: 000443369800003OAI: oai:DiVA.org:uu-364167DiVA, id: diva2:1260834
Tilgjengelig fra: 2018-11-05 Laget: 2018-11-05 Sist oppdatert: 2018-11-16bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Strand, Robin

Søk i DiVA

Av forfatter/redaktør
Strand, Robin
Av organisasjonen
I samme tidsskrift
Journal of Mathematical Imaging and Vision

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 24 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf