uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Segmentation of Post-operative Glioblastoma in MRI by U-Net with Patient-specific Interactive Refinement
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Radiologi.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Radiologi.
Vise andre og tillknytning
2018 (engelsk)Inngår i: Proceedings, Brain Lesion (BrainLes) workshop, 2018Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Accurate volumetric change estimation of glioblastoma is very important for post-surgical treatment follow-up. In this paper, an interactive segmentation method was developed and evaluated with the aim to guide volumetric estimation of glioblastoma. U-Net based fully convolutional network is used for initial segmentation of glioblastoma from post contrast MR images. The max flow algorithm is applied on the probability map of U-Net to update the initial segmentation and the result is displayed to the user for interactive refinement. Network update is performed based on the corrected contour by considering patient specific learning to deal with large context variations among dierent images. The proposed method is evaluated on a clinical MR image databas eof 15 glioblastoma patients with longitudinal scan data. The experimental results depict an improvement of segmentation performance due to patient specific fine-tuning. The proposed method is computationally fast and efficient as compared to state-of-the-art interactive segmentation tools. This tool could be useful for post-surgical treatment follow-upwith minimal user intervention.

sted, utgiver, år, opplag, sider
2018.
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-366550OAI: oai:DiVA.org:uu-366550DiVA, id: diva2:1264853
Konferanse
21st INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING & COMPUTER ASSISTED INTERVENTION, September 16-20, 2018, Granada, Spain
Forskningsfinansiär
Swedish Research Council, 2014-6199Vinnova, 2017-02447
Merknad

Extended versions of all accepted papers will be published as LCNS proceedings by Springer-Verlag. http://www.brainlesion-workshop.org/

Tilgjengelig fra: 2018-11-21 Laget: 2018-11-21 Sist oppdatert: 2019-03-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

http://www.miccai2018.org/files/downloads/AppPDF/miccaikitap2018.pdf

Personposter BETA

Dhara, Ashis KumarAyyalasomayajula, Kalyan RamFahlström, MarkusWikström, JohanLarsson, Elna-MarieStrand, Robin

Søk i DiVA

Av forfatter/redaktør
Dhara, Ashis KumarAyyalasomayajula, Kalyan RamFahlström, MarkusWikström, JohanLarsson, Elna-MarieStrand, Robin
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 153 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf