uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
ECOVIBE:: On-Demand Sensing for Railway Bridge Structural Health Monitoring
College of Engineering, Nanjing Agricultural University, Nanjing, China.
RISE SICS, Kista, Sweden.ORCID-id: 0000-0002-2586-8573
RISE SICS, Kista, Sweden.
RISE SICS, Kista, Sweden.
2019 (engelsk)Inngår i: IEEE Internet of Things Journal, ISSN 2327-4662, Vol. 6, nr 1, s. 1068-1078Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Energy efficient sensing is one of the main objectives in the design of networked embedded monitoring systems. However, existing approaches such as duty cycling and ambient energy harvesting face challenges in railway bridge health monitoring applications due to the unpredictability of train passages and insufficient ambient energy around bridges. This paper presents ECOVIBE (Eco-friendly Vibration), an on-demand sensing system that automatically turns on itself when a train passes on the bridge and adaptively powers itself off after finishing all tasks. After that, it goes into an inactive state with near-zero power dissipation. ECOVIBE achieves these by: Firstly, a novel, fully passive event detection circuit to continuously detect passing trains without consuming any energy. Secondly, combining train-induced vibration energy harvesting with a transistor-based load switch, a tiny amount of energy is sufficient to keep ECOVIBE active for a long time. Thirdly, a passive adaptive off control circuit is introduced to quickly switch off ECOVIBE. Also this circuit does not consume any energy during inactivity periods. We present the prototype implementation of the proposed system using commercially available components and evaluate its performance in real-world scenarios. Our results show that ECOVIBE is effective in railway bridge health monitoring applications.

sted, utgiver, år, opplag, sider
2019. Vol. 6, nr 1, s. 1068-1078
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-366921DOI: 10.1109/JIOT.2018.2867086ISI: 000459709500090OAI: oai:DiVA.org:uu-366921DiVA, id: diva2:1265993
Forskningsfinansiär
VinnovaTilgjengelig fra: 2018-11-26 Laget: 2018-11-26 Sist oppdatert: 2019-05-15bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Voigt, Thiemo

Søk i DiVA

Av forfatter/redaktør
Voigt, Thiemo
I samme tidsskrift
IEEE Internet of Things Journal

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 59 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf