uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Extending Automata Learning to Extended Finite State Machines
Scania CV AB, Sodertalje, Sweden.
Dortmund Univ Technol, Dortmund, Germany;Fraunhofer ISST, Dortmund, Germany.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datorteknik.
TU Dortmund, Chair Programming Syst, Dortmund, Germany.
2018 (engelsk)Inngår i: Machine Learning for Dynamic Software Analysis: Potentials and Limits / [ed] Bennaceur, A Hahnle, R Meinke, K, Springer, 2018, s. 149-177Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Automata learning is an established class of techniques for inferring automata models by observing how they respond to a sample of input words. Recently, approaches have been presented that extend these techniques to infer extended finite state machines (EFSMs) by dynamic black-box analysis. EFSMs model both data flow and control behavior, and their mutual interaction. Different dialects of EFSMs are widely used in tools for model-based software development, verification, and testing. This survey paper presents general principles behind some of these recent extensions. The goal is to elucidate how the principles behind classic automata learning can be maintained and guide extensions to more general automata models, and to situate some extensions with respect to these principles.

sted, utgiver, år, opplag, sider
Springer, 2018. s. 149-177
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 11026
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-391442DOI: 10.1007/978-3-319-96562-8_6ISI: 000476941200006ISBN: 978-3-319-96562-8 (digital)ISBN: 978-3-319-96561-1 (tryckt)OAI: oai:DiVA.org:uu-391442DiVA, id: diva2:1345042
Konferanse
International Dagstuhl Seminar on 16172 - Machine Learning for Dynamic Software Analysis - Potentials and Limits, APR 24-27, 2016, Wadern, GERMANY
Forskningsfinansiär
EU, FP7, Seventh Framework Programme, IST 231167Swedish Research CouncilTilgjengelig fra: 2019-08-22 Laget: 2019-08-22 Sist oppdatert: 2019-08-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Jonsson, Bengt

Søk i DiVA

Av forfatter/redaktør
Jonsson, Bengt
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 19 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf