Logo: to the web site of Uppsala University

uu.sePublikasjoner fra Uppsala universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Computer Vision for Camera Trap Footage: Comparing classification with object detection
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
2021 (engelsk)Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
Abstract [en]

Monitoring wildlife is of great interest to ecologists and is arguably even more important in the Arctic, the region in focus for the research network INTERACT, where the effects of climate change are greater than on the rest of the planet. This master thesis studies how artificial intelligence (AI) and computer vision can be used together with camera traps to achieve an effective way to monitor populations. The study uses an image data set, containing both humans and animals. The images were taken by camera traps from ECN Cairngorms, a station in the INTERACT network. The goal of the project is to classify these images into one of three categories: "Empty", "Animal" and "Human". Three different methods are compared, a DenseNet201 classifier, a YOLOv3 object detector, and the pre-trained MegaDetector, developed by Microsoft. No sufficient results were achieved with the classifier, but YOLOv3 performed well on human detection, with an average precision (AP) of 0.8 on both training and validation data. The animal detections for YOLOv3 did not reach an as high AP and this was likely because of the smaller amount of training examples. The best results were achieved by MegaDetector in combination with an added method to determine if the detected animals were dogs, reaching an average precision of 0.85 for animals and 0.99 for humans. This is the method that is recommended for future use, but there is potential to improve all the models and reach even more impressive results.Teknisk-naturvetenskapliga

sted, utgiver, år, opplag, sider
2021. , s. 56
Serie
UPTEC F, ISSN 1401-5757 ; 21037
Emneord [en]
computer vision, camera traps, classification, object detection, neural networks, artificial intelligence, machine learning
Emneord [sv]
datorseende, kamerafällor, klassificering, detektering, neurala nätverk, artificiell intelligens, maskininlärning
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-447482OAI: oai:DiVA.org:uu-447482DiVA, id: diva2:1574140
Eksternt samarbeid
AFRY
Utdanningsprogram
Master Programme in Engineering Physics
Veileder
Examiner
Tilgjengelig fra: 2021-06-28 Laget: 2021-06-28 Sist oppdatert: 2025-02-07bibliografisk kontrollert

Open Access i DiVA

fulltext(22533 kB)1405 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 22533 kBChecksum SHA-512
8cc13840629ad578ace7c33659539ce37a07560f848f22a744bcaa0c9825bea3f8837f7c5f3f3a81e66c749c467cf275b709804b66699d9559c1dc172894a670
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1406 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1133 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf