uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Efficient algorithms for multidimensional global optimization in genetic mapping of complex traits
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för teknisk databehandling. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Tillämpad beräkningsvetenskap.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för teknisk databehandling. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Tillämpad beräkningsvetenskap.
2010 (engelsk)Inngår i: Advances and Applications in Bioinformatics and Chemistry, ISSN 1178-6949, Vol. 3, s. 75-88Artikkel i tidsskrift (Fagfellevurdert) Published
sted, utgiver, år, opplag, sider
2010. Vol. 3, s. 75-88
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-93884DOI: 10.2147/AABC.S9240OAI: oai:DiVA.org:uu-93884DiVA, id: diva2:167514
Prosjekter
eSSENCETilgjengelig fra: 2005-12-22 Laget: 2005-12-22 Sist oppdatert: 2018-01-13bibliografisk kontrollert
Inngår i avhandling
1. Numerical Algorithms for Mapping of Multiple Quantitative Trait Loci in Experimental Populations
Åpne denne publikasjonen i ny fane eller vindu >>Numerical Algorithms for Mapping of Multiple Quantitative Trait Loci in Experimental Populations
2005 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Most traits of medical or economic importance are quantitative, i.e. they can be measured on a continuous scale. Strong biological evidence indicates that quantitative traits are governed by a complex interplay between the environment and multiple quantitative trait loci, QTL, in the genome. Nonlinear interactions make it necessary to search for several QTL simultaneously. This thesis concerns numerical methods for QTL search in experimental populations. The core computational problem of a statistical analysis of such a population is a multidimensional global optimization problem with many local optima. Simultaneous search for d QTL involves solving a d-dimensional problem, where each evaluation of the objective function involves solving one or several least squares problems with special structure. Using standard software, already a two-dimensional search is costly, and searches in higher dimensions are prohibitively slow.

Three efficient algorithms for evaluation of the most common forms of the objective function are presented. The computing time for the linear regression method is reduced by up to one order of magnitude for real data examples by using a new scheme based on updated QR factorizations. Secondly, the objective function for the interval mapping method is evaluated using an updating technique and an efficient iterative method, which results in a 50 percent reduction in computing time. Finally, a third algorithm, applicable to the imputation and weighted linear mixture model methods, is presented. It reduces the computing time by between one and two orders of magnitude.

The global search problem is also investigated. Standard software techniques for finding the global optimum of the objective function are compared with a new approach based on the DIRECT algorithm. The new method is more accurate than the previously fastest scheme and locates the optimum in 1-2 orders of magnitude less time. The method is further developed by coupling DIRECT to a local optimization algorithm for accelerated convergence, leading to additional time savings of up to eight times. A parallel grid computing implementation of exhaustive search is also presented, and is suitable e.g for verifying global optima when developing efficient optimization algorithms tailored for the QTL mapping problem.

Using the algorithms presented in this thesis, simultaneous search for at least six QTL can be performed routinely. The decrease in overall computing time is several orders of magnitude. The results imply that computations which were earlier considered impossible are no longer difficult, and that genetic researchers thus are free to focus on model selection and other central genetical issues.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2005. s. 61
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 133
Emneord
Scientific computing
HSV kategori
Forskningsprogram
Beräkningsvetenskap
Identifikatorer
urn:nbn:se:uu:diva-6248 (URN)91-554-6427-0 (ISBN)
Disputas
2006-01-13, Room 2446, Polacksbacken, Lägerhyddsvägen 2D, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2005-12-22 Laget: 2005-12-22 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Ljungberg, KajsaHolmgren, Sverker

Søk i DiVA

Av forfatter/redaktør
Ljungberg, KajsaHolmgren, Sverker
Av organisasjonen
I samme tidsskrift
Advances and Applications in Bioinformatics and Chemistry

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 814 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf