Logo: to the web site of Uppsala University

uu.sePublikasjoner fra Uppsala universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Semiring Structure for Generalised Pólya Urns
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen.
(engelsk)Inngår i: Artikkel i tidsskrift (Annet vitenskapelig) Submitted
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-500974OAI: oai:DiVA.org:uu-500974DiVA, id: diva2:1753790
Tilgjengelig fra: 2023-04-28 Laget: 2023-04-28 Sist oppdatert: 2023-04-29
Inngår i avhandling
1. Building and Destroying Urns, Graphs, and Trees
Åpne denne publikasjonen i ny fane eller vindu >>Building and Destroying Urns, Graphs, and Trees
2023 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

In this thesis, consisting of an introduction and four papers, different models in the mathematical area of combinatorial probability are investigated.

In Paper I, two operations for combining generalised Pólya urns, called disjoint union and product, are defined. This is then shown to turn the set of isomorphism classes of Pólya urns into a semiring, and we find that assigning to an urn its intensity matrix is a semiring homomorphism.

In paper II, a modification and generalisation of the random cutting model is introduced. For a finite graph with given source and target vertices, we remove vertices at random and discard all resulting components without a source node. The results concern the number of cuts needed to remove all target vertices and the size of the remaining graph, and suggest that this model interpolates between the traditional cutting model and site percolation.

In paper III, we define several polynomial invariants for rooted trees based on the modified cutting model in Paper II.We find recursive identities for these invariants and, using an approach via irreducibility of polynomials, prove that two specific invariants are complete, that is, they distinguish rooted trees up to isomorphism.

In paper IV, joint with Paul Thévenin, we consider an operation of concatenating t random perfect matchings on 2n vertices. Our analysis of the resulting random graph as t tends to infinity shows that there is a giant component if and only if n is odd, and that the size of this giant component as well as the number of components is asymptotically normally distributed.

sted, utgiver, år, opplag, sider
Uppsala: Department of Mathematics, 2023. s. 33
Serie
Uppsala Dissertations in Mathematics, ISSN 1401-2049 ; 131
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-500978 (URN)978-91-506-3009-1 (ISBN)
Disputas
2023-08-24, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2023-05-29 Laget: 2023-04-28 Sist oppdatert: 2023-05-30

Open Access i DiVA

Fulltekst mangler i DiVA

Søk i DiVA

Av forfatter/redaktør
Burghart, Fabian
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 35 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf