uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Grid-enabling an efficient algorithm for demanding global optimization problems in genetic analysis
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för teknisk databehandling. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Tillämpad beräkningsvetenskap. (Software Aspects of High-Performance Computing)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för teknisk databehandling. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Tillämpad beräkningsvetenskap. (ndim)
2007 (engelsk)Inngår i: Proc. 3rd International Conference on e-Science and Grid Computing, Los Alamitos, CA: IEEE Computer Society, 2007, s. 205-212Konferansepaper, Publicerat paper (Fagfellevurdert)
sted, utgiver, år, opplag, sider
Los Alamitos, CA: IEEE Computer Society, 2007. s. 205-212
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-12617DOI: 10.1109/E-SCIENCE.2007.40ISI: 000253614600025ISBN: 978-0-7695-3064-2 (tryckt)OAI: oai:DiVA.org:uu-12617DiVA, id: diva2:40386
Tilgjengelig fra: 2008-01-08 Laget: 2008-01-08 Sist oppdatert: 2018-01-12bibliografisk kontrollert
Inngår i avhandling
1. An e-Science Approach to Genetic Analysis of Quantitative Traits
Åpne denne publikasjonen i ny fane eller vindu >>An e-Science Approach to Genetic Analysis of Quantitative Traits
2010 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Many important traits in plants, animals and humans are quantitative, and most such traits are generally believed to be affected by multiple genetic loci. Standard computational tools for mapping of quantitative traits (i.e. for finding Quantitative Trait Loci, QTL, in the genome) use linear regression models for relating the observed phenotypes to the genetic composition of individuals in an experimental population. Using these tools to simultaneously search for multiple QTL is computationally demanding. The main reason for this is the complex optimization landscape for the multidimensional global optimization problems that must be solved. This thesis describes parallel algorithms, implementations and tools for simultaneous mapping of several QTL. These new computational tools enable genetic analysis exploiting new classes of multidimensional statistical models, potentially resulting in interesting results in genetics.

We first describe how the standard, brute-force algorithm for global optimization in QTL analysis is parallelized and implemented on a grid system. Then, we also present a parallelized version of the more elaborate global optimization algorithm DIRECT and show how this can be efficiently deployed and used on grid systems and other loosely-coupled architectures. The parallel DIRECT scheme is further developed to exploit both coarse-grained parallelism in grid systems or clusters as well as fine-grained, tightly-coupled parallelism in multi-core nodes. The results show that excellent speedup and performance can be archived on grid systems and clusters, even when using a tightly-coupled algorithm such as DIRECT. Finally, we provide two distinctly different front-ends for our code. One is a grid portal providing a graphical front-end suitable for novice users and standard forms of QTL analysis. The other is a prototype of an R-based grid-enabled problem solving environment. Both of these front-ends can, after some further refinement, be utilized by geneticists for performing multidimensional genetic analysis of quantitative traits on a regular basis.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2010. s. 40
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 708
Emneord
QTL Analysis, Grid Computing, Global Optimization, e-Science
HSV kategori
Forskningsprogram
Beräkningsvetenskap
Identifikatorer
urn:nbn:se:uu:diva-111597 (URN)978-91-554-7706-6 (ISBN)
Disputas
2010-02-25, Room 2446, Polacksbacken, Lägerhyddsvägen 2D, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Prosjekter
eSSENCE
Tilgjengelig fra: 2010-02-02 Laget: 2009-12-17 Sist oppdatert: 2018-01-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Jayawardena, MahenHolmgren, Sverker

Søk i DiVA

Av forfatter/redaktør
Jayawardena, MahenHolmgren, Sverker
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 569 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf