uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Biomaterials for Promoting Self-Healing of Bone Tissue
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för materialkemi, Polymerkemi.
2011 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The present work addresses poor bone/implant integration and severe bone defects. In both conditions external stimuli is required for new bone to form. A multilayered functional implant coating, comprised of an inner layer of crystalline titanium dioxide (TiO2) and an outer layer of hydroxyapatite (HAP), loaded with bone morphogenetic protein-2 (BMP-2), was proposed as a tool for providing both improved initial bone formation and long-term osseointegration. The in vitro characterization of the implant coatings showed that TiO2 and HAP were more favorable for cell viability, cell morphology and initial cell differentiation, compared to native titanium oxide. Furthermore, significantly higher cell differentiation was observed on surfaces with BMP-2, indicating that a simple soaking process can be used for incorporating bioactive molecules. Moreover, the results suggest that there could be a direct interaction between BMP-2 and HAP, which prolongs the retention of the growth factor, improving its therapeutic effect.

For treating severe bone defects a strategy involving BMP-2 delivery from hyaluronan hydrogels was explored. The hydrogels were prepared from two reactive polymers – an aldehyde-modified hyaluronan and a hydrazide-modified poly(vinyl alcohol). Upon mixing, the two components formed a chemically crosslinked hydrogel. In this work the mixing of the hydrogel components was optimized by rheological measurements. Furthermore, an appropriate buffer was selected for in vitro experiments by studying the swelling of hydrogels in PBS and in cell culture medium. A detection method, based on radioactive labeling of BMP-2 with 125I was used to monitor growth factor release both in vitro and in vivo. The results showed a biphasic release profile of BMP-2, where approximately 16 %  and 3 % of the growth factor remained inside the hydrogel after 4 weeks in vitro and in vivo, respectively. The initial fast release phase corresponded to the early ectopic bone formation observed 8 d after injection of the hydrogel formulation in the thigh muscle of rats. The hydrogel formulation could be improved by incorporation of HAP powder into the hydrogel formulation. Furthermore, bone formation could be increased by pre-incubation of the premixed hydrogel components inside the syringe prior to injection. Crushed hydrogels were also observed to induce more bone formation compared to solid hydrogels, when implanted subcutaneously in rats. This was thought to be due to increased surface area of the hydrogel, which allowed for improved cell infiltration.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis , 2011. , s. 70
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 857
Emneord [en]
Osseointegration, implant coating, hyaluronan hydrogel, bone morphogenetic protein-2, hydroxyapatite, bone, delivery system, injectable, mixing, radioactive labeling
HSV kategori
Forskningsprogram
Kemi med inriktning mot polymerkemi
Identifikatorer
URN: urn:nbn:se:uu:diva-158939ISBN: 978-91-554-8168-1 (tryckt)OAI: oai:DiVA.org:uu-158939DiVA, id: diva2:443492
Disputas
2011-11-11, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2011-10-21 Laget: 2011-09-19 Sist oppdatert: 2011-11-04bibliografisk kontrollert
Delarbeid
1. In vitro characterization of bioactive titanium dioxide/hydroxyapatite surfaces functionalized with BMP-2
Åpne denne publikasjonen i ny fane eller vindu >>In vitro characterization of bioactive titanium dioxide/hydroxyapatite surfaces functionalized with BMP-2
Vise andre…
2009 (engelsk)Inngår i: Journal of biomedical materials research. Part B, Applied biomaterials, ISSN 1552-4981, Vol. 91B, nr 2, s. 780-787Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Poor implant fixation and bone resorption are two of the major challenges in modern orthopedics and are caused by poor bone/implant integration. In this work, bioactive crystalline titanium dioxide (TiO(2))/hydroxyapatite (HA) surfaces, functionalized with bone morphogenetic protein 2 (BMP-2), were evaluated as potential implant coatings for improved osseointegration. The outer layer consisted of HA, which is known to be osteoconductive, and may promote improved initial bone attachment when functionalized with active molecules such as BMP-2 in a soaking process. The inner layer of crystalline TiO(2) is bioactive and ensures long-term fixation of the implant, once the hydroxyapatite has been resorbed. The in vitro response of mesenchymal stem cells on bioactive crystalline TiO(2)/HA surfaces functionalized with BMP-2 was examined and compared with the cell behavior on nonfunctionalized HA layers, crystalline TiO(2) surfaces, and native titanium oxide surfaces. The crystalline TiO(2) and the HA surfaces showed to be more favorable than the native titanium oxide surface in terms of cell viability and cell morphology as well as initial cell differentiation. Furthermore, cell differentiation on BMP-2-functionalized HA surfaces was found to be significantly higher than on the other surfaces indicating that the simple soaking process can be used for incorporating active molecules, promoting fast bone osseointegration to HA layers.

Emneord
biomimetic hydroxyapatite, growth factors, BMP-2, anatase titanium dioxide, mesenchymal stem cells, differentiation, viability, morphology
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
urn:nbn:se:uu:diva-108680 (URN)10.1002/jbm.b.31456 (DOI)000270868600034 ()19582842 (PubMedID)
Tilgjengelig fra: 2009-09-26 Laget: 2009-09-26 Sist oppdatert: 2018-02-08bibliografisk kontrollert
2. The Effect of Mixing on the Mechanical Properties of Hyaluronan-Based Injectable Hydrogels
Åpne denne publikasjonen i ny fane eller vindu >>The Effect of Mixing on the Mechanical Properties of Hyaluronan-Based Injectable Hydrogels
2011 (engelsk)Inngår i: Macromolecular materials and engineering (Print), ISSN 1438-7492, E-ISSN 1439-2054, Vol. 296, nr 10, s. 944-951Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A method for determining the correlation between the mixing of two reactive polymers and the structural and mechanical properties of the formed hydrogels is presented. Rheological measurements show that insufficient mixing gives rise to soft and not fully crosslinked hydrogels while excessive mixing beyond gel point results in weaker hydrogels due to potential breakage of their 3D network. Furthermore, the hydrogels swell significantly more in cell culture medium than in phosphate-buffered saline, attributed to interactions with additional molecules such as proteins. Thus, moderate mixing gives rise to the most homogenous and mechanically stable hydrogels and the choice of medium e.g., for release experiments, should be consistent in order to avoid unnecessary variations in the data caused by different swelling profiles.

Emneord
Hydrogels, mixing, polymer, rheology, swelling
HSV kategori
Forskningsprogram
Kemi med inriktning mot polymerkemi
Identifikatorer
urn:nbn:se:uu:diva-158952 (URN)10.1002/mame.201100008 (DOI)000296421800008 ()
Tilgjengelig fra: 2011-09-19 Laget: 2011-09-19 Sist oppdatert: 2017-12-08bibliografisk kontrollert
3. Characterization of recombinant human bone morphogenetic protein-2 delivery from injectable hyaluronan-based hydrogels by means of I-125-radiolabelling
Åpne denne publikasjonen i ny fane eller vindu >>Characterization of recombinant human bone morphogenetic protein-2 delivery from injectable hyaluronan-based hydrogels by means of I-125-radiolabelling
Vise andre…
2014 (engelsk)Inngår i: Journal of Tissue Engineering and Regenerative Medicine, ISSN 1932-6254, E-ISSN 1932-7005, Vol. 8, nr 10, s. 821-830Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This study presents a thorough in vitro and in vivo characterization of the delivery of bone morphogenetic protein 2 (BMP-2) from a hyaluronan-based hydrogel system. The in vitro release of BMP-2 from similar hydrogels has previously been studied by enzyme-linked immunosorbent assay (ELISA), by which only a fraction of the loaded protein is detected. In the current study, I-125 radiolabelling was used instead to monitor BMP-2 in vitro and in vivo. To minimize protein loss during handling, I-125-BMP-2 adsorption to different tubes was studied at different times and temperatures. The data showed that Protein LoBind tubes exhibited the lowest protein affinity. Furthermore, a biphasic release profile of biologically active BMP-2 was observed both in vitro and in vivo, with the initial fast phase during the first week, followed by a slower release during the remaining 3 weeks. The initial fast-release phase corresponded to the early bone formation observed after 8 days in an ectopic model in rats. Bone volume and mineral content increased until day 14, after which a decrease in bone volume was observed, possibly due to resorption in response to decreased amounts of released BMP-2. Overall, the results suggested that cautious protein handling and a reliable quantification technique are essential factors for successful design of a BMP-2 delivery system.

Emneord
BMP-2 delivery, radioactive labeling, hyaluronan hydrogels, reproducibility, ectopic bone formation, protein adsorption
HSV kategori
Forskningsprogram
Kemi med inriktning mot polymerkemi
Identifikatorer
urn:nbn:se:uu:diva-158961 (URN)10.1002/term.1584 (DOI)000343059700009 ()22927307 (PubMedID)
Tilgjengelig fra: 2011-09-19 Laget: 2011-09-19 Sist oppdatert: 2018-12-04
4. Pre-incubation of chemically crosslinked hyaluronan-based hydrogels, loaded with BMP-2 and hydroxyapatite, and its effect on ectopic bone formation
Åpne denne publikasjonen i ny fane eller vindu >>Pre-incubation of chemically crosslinked hyaluronan-based hydrogels, loaded with BMP-2 and hydroxyapatite, and its effect on ectopic bone formation
Vise andre…
2014 (engelsk)Inngår i: Journal of materials science. Materials in medicine, ISSN 0957-4530, E-ISSN 1573-4838, Vol. 25, nr 4, s. 1013-1023Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The effects of pre-incubation of hyaluronan hydrogels, for different lengths of time after the initiation of chemical crosslinking and prior to injection, were explored both by investigating the in vitro BMP-2 release kinetics from the hydrogel and by studying the ectopic bone formation in rats. From the curing profile, obtained from rheological analysis, appropriate pre-incubation times (1 min, 5 h and 3 days) were selected, to prepare slightly, moderately and fully cured hydrogels. Comparable release profiles were observed for all three test groups in vitro. Furthermore, radiography, pQCT and histology of the explanted grafts showed cancellous bone formation in all groups after 5 weeks in vivo. However, longer pre-incubation times gave rise to an increase in bone volume, but a decrease in bone density. Moreover, the 5 h and the 3 days grafts appeared to be more ordered and resistant to deformation from the surrounding tissue than the 1 min grafts. The observed variations in mechanical and biological properties could potentially be used to adapt the treatment for a specific indication.

HSV kategori
Forskningsprogram
Kemi med inriktning mot polymerkemi
Identifikatorer
urn:nbn:se:uu:diva-158963 (URN)10.1007/s10856-014-5147-y (DOI)000333093300006 ()
Tilgjengelig fra: 2011-09-19 Laget: 2011-09-19 Sist oppdatert: 2018-12-04
5. Improved bone formation through increased surface area of hyaluronan-based hydrogels when used as carriers for BMP-2
Åpne denne publikasjonen i ny fane eller vindu >>Improved bone formation through increased surface area of hyaluronan-based hydrogels when used as carriers for BMP-2
Vise andre…
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract
Emneord
Hyaluronan, hydroxyapatite, BMP, hydrogel, porosity, bone regeneration
HSV kategori
Forskningsprogram
Kemi med inriktning mot polymerkemi
Identifikatorer
urn:nbn:se:uu:diva-158967 (URN)
Tilgjengelig fra: 2011-09-26 Laget: 2011-09-19 Sist oppdatert: 2018-09-13

Open Access i DiVA

fulltext(4167 kB)2259 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4167 kBChecksum SHA-512
d0e17e0a6a7a3a3ec47bdd4ea7ab27a1273bb1692fa8d596e8171dba0e953979250168a87f597b1e3bb7fd6a2a3926f97178e75b2b74fd966dbbb8c3771509b2
Type fulltextMimetype application/pdf
Kjøp publikasjonen >>

Personposter BETA

Piskounova, Sonya

Søk i DiVA

Av forfatter/redaktør
Piskounova, Sonya
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 2259 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 2312 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf