Logo: to the web site of Uppsala University

uu.sePublikasjoner fra Uppsala universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Measure Transformer Semantics for Bayesian Machine Learning
Microsoft Research, Cambridge.
Microsoft Research, Cambridge.
University of Pennsylvania.
Microsoft Research, Cambridge.
Vise andre og tillknytning
2011 (engelsk)Inngår i: 20th European Symposium on Programming: Held as Part of the Joint European Conferences on Theory and Practice of Software / [ed] G. Barthe, Berlin, Heidelberg: Springer-Verlag , 2011, s. 77-96Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The Bayesian approach to machine learning amounts to inferring posterior distributions of random variables from a probabilistic model of how the variables are related (that is, a prior distribution) and a set of observations of variables. There is a trend in machine learning towards expressing Bayesian models as probabilistic programs. As a foundation for this kind of programming, we propose a core functional calculus with primitives for sampling prior distributions and observing variables. We define combinators for measure transformers, based on theorems in measure theory, and use these to give a rigorous semantics to our core calculus. The original features of our semantics include its support for discrete, continuous, and hybrid measures, and, in particular, for observations of zero-probability events. We compile our core language to a small imperative language that has a straightforward semantics via factor graphs, data structures that enable many efficient inference algorithms. We use an existing inference engine for efficient approximate inference of posterior marginal distributions, treating thousands of observations per second for large instances of realistic models.

sted, utgiver, år, opplag, sider
Berlin, Heidelberg: Springer-Verlag , 2011. s. 77-96
Serie
Lecture Notes in Computer Science, ISSN 0302-9743 ; 6602
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-161498DOI: 10.1007/978-3-642-19718-5_5OAI: oai:DiVA.org:uu-161498DiVA, id: diva2:456362
Konferanse
ESOP 2011, 20th European Symposium on Programming, Saarbrücken, Germany
Tilgjengelig fra: 2011-12-06 Laget: 2011-11-14 Sist oppdatert: 2018-01-12bibliografisk kontrollert

Open Access i DiVA

fulltext(281 kB)529 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 281 kBChecksum SHA-512
703b64a3945f21427e7d3dfff1695e29015dc4ce66485308bfaf44f9cc7005efd93ba0b083178f104a581820e3ff4f7fbebcce3119cc2434c21b5c54e5c4863b
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Person

Borgström, Johannes

Søk i DiVA

Av forfatter/redaktør
Borgström, Johannes

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 529 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 719 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf