uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On the accuracy and stability of the perfectly matched layer in transient waveguides
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.
2012 (engelsk)Inngår i: Journal of Scientific Computing, ISSN 0885-7474, E-ISSN 1573-7691, Vol. 53, s. 642-671Artikkel i tidsskrift (Fagfellevurdert) Published
sted, utgiver, år, opplag, sider
2012. Vol. 53, s. 642-671
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-172993DOI: 10.1007/s10915-012-9594-7ISI: 000311400300008OAI: oai:DiVA.org:uu-172993DiVA, id: diva2:516160
Tilgjengelig fra: 2012-04-23 Laget: 2012-04-17 Sist oppdatert: 2017-12-07bibliografisk kontrollert
Inngår i avhandling
1. Perfectly Matched Layers and High Order Difference Methods for Wave Equations
Åpne denne publikasjonen i ny fane eller vindu >>Perfectly Matched Layers and High Order Difference Methods for Wave Equations
2012 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The perfectly matched layer (PML) is a novel technique to simulate the absorption of waves in unbounded domains. The underlying equations are often a system of second order hyperbolic partial differential equations. In the numerical treatment, second order systems are often rewritten and solved as first order systems. There are several benefits with solving the equations in second order formulation, though. However, while the theory and numerical methods for first order hyperbolic systems are well developed, numerical techniques to solve second order hyperbolic systems are less complete.

We construct a strongly well-posed PML for second order systems in two space dimensions, focusing on the equations of linear elasto-dynamics. In the continuous setting, the stability of both first order and second order formulations are linearly equivalent. We have found that if the so-called geometric stability condition is violated, approximating the first order PML with standard central differences leads to a high frequency instability at most resolutions. In the second order setting growth occurs only if growing modes are well resolved. We determine the number of grid points that can be used in the PML to ensure a discretely stable PML, for several anisotropic elastic materials.

We study the stability of the PML for problems where physical boundaries are important. First, we consider the PML in a waveguide governed by the scalar wave equation. To ensure the accuracy and the stability of the discrete PML, we derived a set of equivalent boundary conditions. Second, we consider the PML for second order symmetric hyperbolic systems on a half-plane. For a class of stable boundary conditions, we derive transformed boundary conditions and prove the stability of the corresponding half-plane problem. Third, we extend the stability analysis to rectangular elastic waveguides, and demonstrate the stability of the discrete PML.

Building on high order summation-by-parts operators, we derive high order accurate and strictly stable finite difference approximations for second order time-dependent hyperbolic systems on bounded domains. Natural and mixed boundary conditions are imposed weakly using the simultaneous approximation term method. Dirichlet boundary conditions are imposed strongly by injection. By constructing continuous strict energy estimates and analogous discrete strict energy estimates, we prove strict stability.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2012. s. 47
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 931
Emneord
Elastic waves, Surface waves, Perfectly matched layers, High order difference methods, Stability, Summation-by-parts operators, Boundary treatments
HSV kategori
Forskningsprogram
Beräkningsvetenskap med inriktning mot numerisk analys
Identifikatorer
urn:nbn:se:uu:diva-173009 (URN)978-91-554-8365-4 (ISBN)
Disputas
2012-06-08, Room 2446, Polacksbacken, Lägerhyddsvägen 2D, Uppsala, 10:00 (engelsk)
Opponent
Veileder
Forskningsfinansiär
Swedish Research Council, VR 2009-5852
Tilgjengelig fra: 2012-05-14 Laget: 2012-04-17 Sist oppdatert: 2012-10-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Duru, KennethKreiss, Gunilla

Søk i DiVA

Av forfatter/redaktør
Duru, KennethKreiss, Gunilla
Av organisasjonen
I samme tidsskrift
Journal of Scientific Computing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 653 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf