uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An intrusive hybrid method for discontinuous two-phase flow under uncertainty
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.
2012 (engelsk)Rapport (Annet vitenskapelig)
sted, utgiver, år, opplag, sider
2012.
Serie
Technical report / Department of Information Technology, Uppsala University, ISSN 1404-3203 ; 2012-035
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-188347OAI: oai:DiVA.org:uu-188347DiVA, id: diva2:577674
Tilgjengelig fra: 2012-12-16 Laget: 2012-12-16 Sist oppdatert: 2013-01-11bibliografisk kontrollert
Inngår i avhandling
1. Uncertainty Quantification and Numerical Methods for Conservation Laws
Åpne denne publikasjonen i ny fane eller vindu >>Uncertainty Quantification and Numerical Methods for Conservation Laws
2013 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Conservation laws with uncertain initial and boundary conditions are approximated using a generalized polynomial chaos expansion approach where the solution is represented as a generalized Fourier series of stochastic basis functions, e.g. orthogonal polynomials or wavelets. The stochastic Galerkin method is used to project the governing partial differential equation onto the stochastic basis functions to obtain an extended deterministic system.

The stochastic Galerkin and collocation methods are used to solve an advection-diffusion equation with uncertain viscosity. We investigate well-posedness, monotonicity and stability for the stochastic Galerkin system. High-order summation-by-parts operators and weak imposition of boundary conditions are used to prove stability. We investigate the impact of the total spatial operator on the convergence to steady-state. 

Next we apply the stochastic Galerkin method to Burgers' equation with uncertain boundary conditions. An analysis of the truncated polynomial chaos system presents a qualitative description of the development of the solution over time. An analytical solution is derived and the true polynomial chaos coefficients are shown to be smooth, while the corresponding coefficients of the truncated stochastic Galerkin formulation are shown to be discontinuous. We discuss the problematic implications of the lack of known boundary data and possible ways of imposing stable and accurate boundary conditions.

We present a new fully intrusive method for the Euler equations subject to uncertainty based on a Roe variable transformation. The Roe formulation saves computational cost compared to the formulation based on expansion of conservative variables. Moreover, it is more robust and can handle cases of supersonic flow, for which the conservative variable formulation fails to produce a bounded solution. A multiwavelet basis that can handle  discontinuities in a robust way is used.

Finally, we investigate a two-phase flow problem. Based on regularity analysis of the generalized polynomial chaos coefficients, we present a hybrid method where solution regions of varying smoothness are coupled weakly through interfaces. In this way, we couple smooth solutions solved with high-order finite difference methods with non-smooth solutions solved for with shock-capturing methods.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2013. s. 39
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1008
Emneord
uncertainty quantification, polynomial chaos, stochastic Galerkin methods, conservation laws, hyperbolic problems, finite difference methods, finite volume methods
HSV kategori
Forskningsprogram
Beräkningsvetenskap med inriktning mot numerisk analys
Identifikatorer
urn:nbn:se:uu:diva-188348 (URN)978-91-554-8569-6 (ISBN)
Disputas
2013-02-08, Room 2446, Polacksbacken, Lägerhyddsvägen 2D, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2013-01-11 Laget: 2012-12-16 Sist oppdatert: 2013-04-02bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

http://www.it.uu.se/research/publications/reports/2012-035/

Personposter BETA

Pettersson, PerNordström, Jan

Søk i DiVA

Av forfatter/redaktør
Pettersson, PerNordström, Jan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 416 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf