uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Theoretical Study of Electronic Transport through DNA Nucleotides in a Double-Functionalized Graphene Nanogap
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
Vise andre og tillknytning
2013 (engelsk)Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, nr 29, s. 15421-15428Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Graphene nanogaps and nanopores show potential for the purpose of electrical DNA sequencing, in particular because single-base resolution appears to be readily achievable. Here, we evaluated from first principles the advantages of a nanogap setup with functionalized graphene edges. To this end, we employed density functional theory and the non-equilibrium Green's function method to investigate the transverse conductance properties of the four nucleotides occurring in DNA when located between opposing functionalized graphene electrodes. In particular, we determined the electrical tunneling current variation as a function of the applied bias and analyzed the associated differential conductance at a voltage which appears suitable to distinguish between the four nucleotides. Intriguingly, we predict for one of the nucleotides (deoxyguanosine monophosphate) a negative differential resistance effect.

sted, utgiver, år, opplag, sider
2013. Vol. 117, nr 29, s. 15421-15428
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-208163DOI: 10.1021/jp4048743ISI: 000322503600064OAI: oai:DiVA.org:uu-208163DiVA, id: diva2:651185
Tilgjengelig fra: 2013-09-24 Laget: 2013-09-24 Sist oppdatert: 2017-12-06bibliografisk kontrollert
Inngår i avhandling
1. Molecular Electronics: Insight from Ab-Initio Transport Simulations
Åpne denne publikasjonen i ny fane eller vindu >>Molecular Electronics: Insight from Ab-Initio Transport Simulations
2011 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis presents the theoretical studies of electronic transport in molecular electronic devices. Such devices have been proposed and investigated as a promising new approach that complements conventional silicon-based electronics. To design and fabricate future nanoelectronic devices, it is essential to understand the conduction mechanism at a molecular or atomic level. Our approach is based on the non-equilibrium Green's function method (NEGF) combined with density functional theory (DFT). We apply the method to study the electronic transport properties of two-probe systems consisting of molecules or atomic wires sandwiched between leads. A few molecular electronic devices are characterized; namely, conducting molecular wires, molecular switches and molecular recognition sensors. The considered applications are interconnection of different nanoelectronic units with cumulene molecular wires; adding switching functionality to the molecular connectors by applying stress to the CNT-cumulene-CNT junction or by introducing phthalocyanine unit; sensing of individual nucleotides, e.g., for DNA sequencing applications. The obtained results provide useful insights into the electron transport properties of molecules. Several interesting and significant features are analyzed and explained in particular such as, level pinning, negative differential resistance, interfering of conducting channels etc.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2011. s. 67
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 875
Emneord
Molecular Electronics, Ab Initio, DNA Sequencing, Nanoscience, Graphene
HSV kategori
Forskningsprogram
Fysik med inriktning mot atom- molekyl- och kondenserande materiens fysik
Identifikatorer
urn:nbn:se:uu:diva-160474 (URN)978-91-554-8208-4 (ISBN)
Disputas
2011-12-08, Å80101, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2011-11-17 Laget: 2011-10-24 Sist oppdatert: 2014-01-27bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Prasongkit, JariyaneeGrigoriev, AntonPathak, BiswarupAhuja, RajeevScheicher, Ralph H.

Søk i DiVA

Av forfatter/redaktør
Prasongkit, JariyaneeGrigoriev, AntonPathak, BiswarupAhuja, RajeevScheicher, Ralph H.
Av organisasjonen
I samme tidsskrift
The Journal of Physical Chemistry C

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 395 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf