uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Atmospheric sound propagation over large-scale irregular terrain
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.
2014 (engelsk)Inngår i: Journal of Scientific Computing, ISSN 0885-7474, E-ISSN 1573-7691, Vol. 61, s. 369-397Artikkel i tidsskrift (Fagfellevurdert) Published
sted, utgiver, år, opplag, sider
2014. Vol. 61, s. 369-397
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-218680DOI: 10.1007/s10915-014-9830-4ISI: 000343215600007OAI: oai:DiVA.org:uu-218680DiVA, id: diva2:696482
Tilgjengelig fra: 2014-02-14 Laget: 2014-02-14 Sist oppdatert: 2017-12-06bibliografisk kontrollert
Inngår i avhandling
1. Efficient Simulation of Wave Phenomena
Åpne denne publikasjonen i ny fane eller vindu >>Efficient Simulation of Wave Phenomena
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Wave phenomena appear in many fields of science such as acoustics, geophysics, and quantum mechanics. They can often be described by partial differential equations (PDEs). As PDEs typically are too difficult to solve by hand, the only option is to compute approximate solutions by implementing numerical methods on computers. Ideally, the numerical methods should produce accurate solutions at low computational cost. For wave propagation problems, high-order finite difference methods are known to be computationally cheap, but historically it has been difficult to construct stable methods. Thus, they have not been guaranteed to produce reasonable results.

In this thesis we consider finite difference methods on summation-by-parts (SBP) form. To impose boundary and interface conditions we use the simultaneous approximation term (SAT) method. The SBP-SAT technique is designed such that the numerical solution mimics the energy estimates satisfied by the true solution. Hence, SBP-SAT schemes are energy-stable by construction and guaranteed to converge to the true solution of well-posed linear PDE. The SBP-SAT framework provides a means to derive high-order methods without jeopardizing stability. Thus, they overcome most of the drawbacks historically associated with finite difference methods.

This thesis consists of three parts. The first part is devoted to improving existing SBP-SAT methods. In Papers I and II, we derive schemes with improved accuracy compared to standard schemes. In Paper III, we present an embedded boundary method that makes it easier to cope with complex geometries. The second part of the thesis shows how to apply the SBP-SAT method to wave propagation problems in acoustics (Paper IV) and quantum mechanics (Papers V and VI). The third part of the thesis, consisting of Paper VII, presents an efficient, fully explicit time-integration scheme well suited for locally refined meshes.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2017. s. 42
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1463
Emneord
finite difference method, high-order accuracy, stability, summation by parts, simultaneous approximation term, quantum mechanics, Dirac equation, local time-stepping
HSV kategori
Forskningsprogram
Beräkningsvetenskap med inriktning mot numerisk analys
Identifikatorer
urn:nbn:se:uu:diva-310124 (URN)978-91-554-9777-4 (ISBN)
Disputas
2017-02-10, Room 2446, ITC, Lägerhyddsvägen 2, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2017-01-19 Laget: 2016-12-11 Sist oppdatert: 2017-01-25

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Almquist, MartinMattsson, Ken

Søk i DiVA

Av forfatter/redaktør
Almquist, MartinMattsson, Ken
Av organisasjonen
I samme tidsskrift
Journal of Scientific Computing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1613 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf