uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Pixel Classification Using General Adaptive Neighborhood-Based Features
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
2014 (engelsk)Inngår i: Proceedings 22nd International Conference on Pattern Recognition (ICPR) 2014, 2014, s. 3750-3755Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper introduces a new descriptor for characterizing and classifying the pixels of texture images by means of General Adaptive Neighborhoods (GANs). The GAN of a pixel is a spatial region surrounding it and fitting its local image structure. The features describing each pixel are then region-based and intensity-based measurements of its corresponding GAN. In addition, these features are combined with the gray-level values of adaptive mathematical morphology operators using GANs as structuring elements. The classification of each pixel of images belonging to five different textures of the VisTex database has been carried out to test the performance of this descriptor. For the sake of comparison, other adaptive neighborhoods introduced in the literature have also been used to extract these features from: the Morphological Amoebas (MA), adaptive geodesic neighborhoods (AGN) and salience adaptive structuring elements (SASE). Experimental results show that the GAN-based method outperforms the others for the performed classification task, achieving an overall accuracy of 97.25% in the five-way classifications, and area under curve values close to 1 in all the five "one class vs. all classes" binary classification problems.

sted, utgiver, år, opplag, sider
2014. s. 3750-3755
Serie
International Conference on Pattern Recognition, ISSN 1051-4651
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-238692DOI: 10.1109/ICPR.2014.644ISI: 000359818003148ISBN: 978-1-4799-5208-3 (tryckt)OAI: oai:DiVA.org:uu-238692DiVA, id: diva2:771875
Konferanse
22nd International Conference on Pattern Recognition, Stockholm, Sweden, August 24-28, 2014
Tilgjengelig fra: 2014-12-15 Laget: 2014-12-15 Sist oppdatert: 2015-10-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Curic, Vladimir

Søk i DiVA

Av forfatter/redaktør
Curic, Vladimir
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 382 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf