uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Numerical study of unbounded capillary surfaces
Department of Applied Mathematics University of Waterloo 200 University Ave. West Waterloo N2L 3G1 Canada. (Pharmacometrics Group)ORCID-id: 0000-0002-5881-2023
2014 (engelsk)Inngår i: Pacific Journal of Mathematics, ISSN 0030-8730, E-ISSN 1945-5844, Vol. 267, nr 1, s. 1-34Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Unbounded capillary surfaces in domains with a sharp corner or a cusp are studied. It is shown how numerical study using a proposed computational methodology leads to two new conjectures for open problems on the asymptotic behavior of capillary surfaces in domains with a cusp. The numerical methodology contains two simple but important ingredients, a change of variable and a change of coordinates, which are inspired by known asymptotic approximations for unbounded capillary surfaces. These ingredients are combined with the finite volume element or Galerkin finite element methods. Extensive numerical tests show that the proposed computational methodology leads to a global approximation method for singular solutions of the Laplace–Young equation that recovers the proper asymptotic behavior at the singular point, is more accurate and has better convergence properties than numerical methods considered for singular capillary surfaces before. Using this computational methodology, two open problems on the asymptotic behavior of capillary surfaces in domains with a cusp are studied numerically, leading to two conjectures that may guide future analytical work on these open problems.

sted, utgiver, år, opplag, sider
2014. Vol. 267, nr 1, s. 1-34
Emneord [en]
singularity, asymptotic analysis, nonlinear elliptic PDE, Laplace–Young equation, finite element method
HSV kategori
Forskningsprogram
Matematik med inriktning mot tillämpad matematik
Identifikatorer
URN: urn:nbn:se:uu:diva-244410DOI: 10.2140/pjm.2014.267.1OAI: oai:DiVA.org:uu-244410DiVA, id: diva2:788751
Tilgjengelig fra: 2015-02-16 Laget: 2015-02-16 Sist oppdatert: 2017-12-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttp://msp.org/pjm/2014/267-1/p01.xhtml

Personposter BETA

Aoki, Yasunori

Søk i DiVA

Av forfatter/redaktør
Aoki, Yasunori
I samme tidsskrift
Pacific Journal of Mathematics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 521 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf