uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Affnity, life cycle, and intracellular complexity of organic-walled microfossils from the Mesoproterozoic of Shanxi, China
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Geovetenskapliga sektionen, Institutionen för geovetenskaper, Paleobiologi. (Palaeobiology)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Geovetenskapliga sektionen, Institutionen för geovetenskaper, Paleobiologi.
Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences.
2015 (engelsk)Inngår i: Journal of Paleontology, ISSN 0022-3360, E-ISSN 1937-2337, Vol. 89, nr 1, s. 28-50Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Light microscope and scanning electron microscope observations on new material of unicellularmicrofossils Dictyosphaera macroreticulata and Shuiyousphaeridium macroreticulatum, from the MesoproterozoicRuyang Group in China, provide insights into the microorganisms’ biological affinity, life cycle and cellularcomplexity. Gigantosphaeridium fibratum n. gen. et sp., is described and is one of the largest Mesoproterozoicmicrofossils recorded. Phenotypic characters of vesicle ornamentation and excystment structures, properties ofresistance and cell wall structure in Dictyosphaera and Shuiyousphaeridium are all diagnostic of microalgalcysts. The wide size ranges of the various morphotypes indicate growth phases compatible with the development ofreproductive cysts. Conspecific biologically, each morphotype represents an asexual (resting cyst) or sexual (zygotic cyst)stage in the life cycle, respectively. We reconstruct this hypothetical life cycle and infer that the organism demonstrates areproductive strategy of alternation of heteromorphic generations. Similarly in Gigantosphaeridium, a metabolicallyexpensive vesicle with processes suggests its protective role as a zygotic cyst. In combination with all these charactersand from the resemblance to extant green algae, we propose the placement of these ancient microorganisms in the stemgroup of Chloroplastida (Viridiplantae). A cell wall composed of primary and secondary layers in Dictyosphaera andShuiyouisphaeridium required a high cellular complexity for their synthesis and the presence of an endomembranesystem and the Golgi apparatus. The plastid was also present, accepting the organism was photosynthetic. The biotareveals a high degree of morphological and cell structural complexity, and provides an insight into ongoing eukaryoticevolution and the development of complex life cycles with sexual reproduction by 1200Ma.

sted, utgiver, år, opplag, sider
Cambridge Journals , 2015. Vol. 89, nr 1, s. 28-50
Emneord [en]
organic-walled microfossils; early eukaryotes; Mesoproterozoic; Dictyosphaera; Shuiyousphaeridium; algae; evolution; intracellular complexity
HSV kategori
Forskningsprogram
Geovetenskap med inriktning mot historisk geologi och paleontologi; Biologi med inriktning mot systematik
Identifikatorer
URN: urn:nbn:se:uu:diva-247264DOI: 10.1017/jpa.2014.4ISI: 000351478500003OAI: oai:DiVA.org:uu-247264DiVA, id: diva2:795472
Forskningsfinansiär
Swedish Research Council, 621-2009-4445Tilgjengelig fra: 2015-03-16 Laget: 2015-03-16 Sist oppdatert: 2017-12-04bibliografisk kontrollert
Inngår i avhandling
1. Palaeobiology and diversification of Proterozoic-Cambrian photosynthetic eukaryotes
Åpne denne publikasjonen i ny fane eller vindu >>Palaeobiology and diversification of Proterozoic-Cambrian photosynthetic eukaryotes
2015 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

One of the most important events in the history of life is the evolution of the complex, eukaryotic cell. The eukaryotes are complex organisms with membrane-bound intracellular structures, and they include a variety of both single-celled and multicellular organisms: plants, animals, fungi and various protists. The evolutionary origin of this group may be studied by direct evidence of past life: fossils. The oldest traces of eukaryotes have appeared by 2.4 billion years ago (Ga), and have additionally diversified in the period around 1.8 Ga. The Mesoproterozoic Era (1.6-1 Ga) is characterised by the first evidence of the appearance complex unicellular microfossils, as well as innovative morphologies, and the evolution of sexual reproduction and multicellularity. For a better understanding of the early eukaryotic evolution and diversification patterns, a part of this thesis has focused on the microfossil records from various time periods and geographic locations. Examination of microfossil morphology, cell wall microstructure and biochemical properties, reflect their intracellular complexity and function, and allow reconstructions of their life cycle, as well as observing the evolutionary pattern of change from Mesoproterozoic, to Cambrian-Ordovician transition. Several case studies included assemblages deriving from Mesoproterozoic, Neoproterozoic and early Paleozoic time intervals that show disparate morphotypes and innovative features indicative of algal clades. The Mesoproterozoic Ruyang Group in northern China has yielded a diverse microfossil assemblage that provides important clues about the diversification of different eukaryotic groups. Furthermore these microfossils contributed an additional evidence for the emergence of the crown group Eukarya by 1.7-1.4 Ga. In another part of this thesis, examination of wall microstructure and chemical properties via Raman spectroscopy has been used to assess the biological affinities of various Neoproterozoic problematic carbonaceous compression fossils. Studies on the early Phanerozoic (c. 545-485 Ma) assemblages from Estonia reconstructed patterns of the early radiations of phytoplankton and its evolutionary innovations. A continuing theme in this thesis has been using a combination of evidence of microfossils’ fine-scale morphology, ecology and chemical properties to determine their function in life, in addition to their systematic position.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2015. s. 47
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1308
Emneord
microfossils, eukaryotes, Mesoproterozoic, Neoproterozoic, Cambrian, Ordovician, palaeobiology, biostratigraphy, phylogeny, China, Estonia, Siberian Platform, prasinophytes, microstructure, Raman spectroscopy
HSV kategori
Forskningsprogram
Geovetenskap med inriktning mot historisk geologi och paleontologi
Identifikatorer
urn:nbn:se:uu:diva-265229 (URN)978-91-554-9389-9 (ISBN)
Disputas
2015-12-11, Hambergsalen, Geocentrum, Villavägen 16, 752 36, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Prosjekter
Palaeobiology and diversification of Proterozoic-Cambrian photosynthetic eukaryotes
Forskningsfinansiär
Swedish Research Council, 621-2009-4445
Tilgjengelig fra: 2015-11-19 Laget: 2015-10-26 Sist oppdatert: 2016-01-13

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Agić, Heda

Søk i DiVA

Av forfatter/redaktør
Agić, Heda
Av organisasjonen
I samme tidsskrift
Journal of Paleontology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1271 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf