uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Acute SGLT inhibition normalizes O-2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk cellbiologi.
Vise andre og tillknytning
2015 (engelsk)Inngår i: American Journal of Physiology - Renal Physiology, ISSN 0363-6127, E-ISSN 1522-1466, Vol. 309, nr 3, s. F227-F234Artikkel i tidsskrift (Fagfellevurdert) Published
Fritextbeskrivning
Abstract [en]

Early stage diabetic nephropathy is characterized by glomerular hyperfiltration and reduced renal tissue PO2. Recent observations have indicated that increased tubular Na+-glucose linked transport (SGLT) plays a role in the development of diabetes-induced hyperfiltration. The aim of the present study was to determine how inhibition of SLGT impacts upon PO2 in the diabetic rat kidney. Diabetes was induced by streptozotocin in Sprague-Dawley rats 2 wk before experimentation. Renal hemodynamics, excretory function, and renal O-2 homeostasis were measured in anesthetized control and diabetic rats during baseline and after acute SGLT inhibition using phlorizin (200 mg/kg ip). Baseline arterial pressure was similar in both groups and unaffected by SGLT inhibition. Diabetic animals displayed reduced baseline PO2 in both the cortex and medulla. SGLT inhibition improved cortical PO2 in the diabetic kidney, whereas it reduced medullary PO2 in both groups. SGLT inhibition reduced Na+ transport efficiency [tubular Na+ transport (TNa)/renal O-2 consumption (QO(2))] in the control kidney, whereas the already reduced TNa/QO(2) in the diabetic kidney was unaffected by SGLT inhibition. In conclusion, these data demonstrate that when SGLT is inhibited, renal cortex PO2 in the diabetic rat kidney is normalized, which implies that increased proximal tubule transport contributes to the development of hypoxia in the diabetic kidney. The reduction in medullary PO2 in both control and diabetic kidneys during the inhibition of proximal Na+ reabsorption suggests the redistribution of active Na+ transport to less efficient nephron segments, such as the medullary thick ascending limb, which results in medullary hypoxia.

sted, utgiver, år, opplag, sider
2015. Vol. 309, nr 3, s. F227-F234
Emneord [en]
diabetes, oxgen consumption, renal hypoxia, sodium-glucose linked transport, sodium transport
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-261965DOI: 10.1152/ajprenal.00689.2014ISI: 000359731400005OAI: oai:DiVA.org:uu-261965DiVA, id: diva2:853600
Forskningsfinansiär
Swedish Heart Lung FoundationSwedish Diabetes AssociationSwedish Research CouncilTilgjengelig fra: 2015-09-14 Laget: 2015-09-07 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Fasching, AngelicaPalm, Fredrik

Søk i DiVA

Av forfatter/redaktør
Fasching, AngelicaFranzen, StephaniePalm, Fredrik
Av organisasjonen
I samme tidsskrift
American Journal of Physiology - Renal Physiology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 650 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf