uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
High order finite difference methods for the wave equation with non-conforming grid interfaces
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.
2016 (engelsk)Inngår i: Journal of Scientific Computing, ISSN 0885-7474, E-ISSN 1573-7691, Vol. 68, s. 1002-1028Artikkel i tidsskrift (Fagfellevurdert) Published
sted, utgiver, år, opplag, sider
2016. Vol. 68, s. 1002-1028
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-264754DOI: 10.1007/s10915-016-0165-1ISI: 000380693700006OAI: oai:DiVA.org:uu-264754DiVA, id: diva2:861408
Tilgjengelig fra: 2016-01-27 Laget: 2015-10-16 Sist oppdatert: 2017-12-01bibliografisk kontrollert
Inngår i avhandling
1. Analysis of boundary and interface closures for finite difference methods for the wave equation
Åpne denne publikasjonen i ny fane eller vindu >>Analysis of boundary and interface closures for finite difference methods for the wave equation
2015 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

We consider high order finite difference methods for the wave equations in the second order form, where the finite difference operators satisfy the summation-by-parts principle. Boundary conditions and interface conditions are imposed weakly by the simultaneous-approximation-term method, and non-conforming grid interfaces are handled by an interface operator that is based on either interpolating directly between the grids or on projecting to piecewise continuous polynomials on an intermediate grid.

Stability and accuracy are two important aspects of a numerical method. For accuracy, we prove the convergence rate of the summation-by-parts finite difference schemes for the wave equation. Our approach is based on Laplace transforming the error equation in time, and analyzing the solution to the boundary system in the Laplace space. In contrast to first order equations, we have found that the determinant condition for the second order equation is less often satisfied for a stable numerical scheme. If the determinant condition is satisfied uniformly in the right half plane, two orders are recovered from the boundary truncation error; otherwise we perform a detailed analysis of the solution to the boundary system in the Laplace space to obtain an error estimate. Numerical experiments demonstrate that our analysis gives a sharp error estimate.

For stability, we study the numerical treatment of non-conforming grid interfaces. In particular, we have explored two interface operators: the interpolation operators and projection operators applied to the wave equation. A norm-compatible condition involving the interface operator and the norm related to the SBP operator is essential to prove stability by the energy method for first order equations. In the analysis, we have found that in contrast to first order equations, besides the norm-compatibility condition an extra condition must be imposed on the interface operators to prove stability by the energy method. Furthermore, accuracy and efficiency studies are carried out for the numerical schemes.

sted, utgiver, år, opplag, sider
Uppsala University, 2015
Serie
IT licentiate theses / Uppsala University, Department of Information Technology, ISSN 1404-5117 ; 2015-005
HSV kategori
Forskningsprogram
Beräkningsvetenskap
Identifikatorer
urn:nbn:se:uu:diva-264761 (URN)
Veileder
Tilgjengelig fra: 2015-10-14 Laget: 2015-10-16 Sist oppdatert: 2017-08-31bibliografisk kontrollert
2. Numerics of Elastic and Acoustic Wave Motion
Åpne denne publikasjonen i ny fane eller vindu >>Numerics of Elastic and Acoustic Wave Motion
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The elastic wave equation describes the propagation of elastic disturbances produced by seismic events in the Earth or vibrations in plates and beams. The acoustic wave equation governs the propagation of sound. The description of the wave fields resulting from an initial configuration or time dependent forces is a valuable tool when gaining insight into the effects of the layering of the Earth, the propagation of earthquakes or the behavior of underwater sound. In the most general case exact solutions to both the elastic wave equation and the acoustic wave equation are impossible to construct. Numerical methods that produce approximative solutions to the underlaying equations now become valuable tools. In this thesis we construct numerical solvers for the elastic and acoustic wave equations with focus on stability, high order of accuracy, boundary conditions and geometric flexibility. The numerical solvers are used to study wave boundary interactions and effects of curved geometries. We also compare the methods that we have constructed to other methods for the simulation of elastic and acoustic wave motion.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2016. s. 32
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1322
Emneord
finite differences, stability, high order accuracy, elastic wave equation, acoustic wave equation
HSV kategori
Forskningsprogram
Beräkningsvetenskap med inriktning mot numerisk analys
Identifikatorer
urn:nbn:se:uu:diva-267135 (URN)978-91-554-9418-6 (ISBN)
Disputas
2016-01-18, 2446, Polacksbacken, Lägerhyddsvägen 2, Uppsala, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2015-12-17 Laget: 2015-11-18 Sist oppdatert: 2016-01-13
3. Finite Difference and Discontinuous Galerkin Methods for Wave Equations
Åpne denne publikasjonen i ny fane eller vindu >>Finite Difference and Discontinuous Galerkin Methods for Wave Equations
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Wave propagation problems can be modeled by partial differential equations. In this thesis, we study wave propagation in fluids and in solids, modeled by the acoustic wave equation and the elastic wave equation, respectively. In real-world applications, waves often propagate in heterogeneous media with complex geometries, which makes it impossible to derive exact solutions to the governing equations. Alternatively, we seek approximated solutions by constructing numerical methods and implementing on modern computers. An efficient numerical method produces accurate approximations at low computational cost.

There are many choices of numerical methods for solving partial differential equations. Which method is more efficient than the others depends on the particular problem we consider. In this thesis, we study two numerical methods: the finite difference method and the discontinuous Galerkin method. The finite difference method is conceptually simple and easy to implement, but has difficulties in handling complex geometries of the computational domain. We construct high order finite difference methods for wave propagation in heterogeneous media with complex geometries. In addition, we derive error estimates to a class of finite difference operators applied to the acoustic wave equation. The discontinuous Galerkin method is flexible with complex geometries. Moreover, the discontinuous nature between elements makes the method suitable for multiphysics problems. We use an energy based discontinuous Galerkin method to solve a coupled acoustic-elastic problem.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2017. s. 53
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1522
Emneord
Wave propagation, Finite difference method, Discontinuous Galerkin method, Stability, Accuracy, Summation by parts, Normal mode analysis
HSV kategori
Forskningsprogram
Beräkningsvetenskap med inriktning mot numerisk analys
Identifikatorer
urn:nbn:se:uu:diva-320614 (URN)978-91-554-9927-3 (ISBN)
Disputas
2017-06-13, Room 2446, Polacksbacken, Lägerhyddsvägen 2, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2017-05-22 Laget: 2017-04-23 Sist oppdatert: 2017-06-28

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Wang, SiyangVirta, KristofferKreiss, Gunilla

Søk i DiVA

Av forfatter/redaktør
Wang, SiyangVirta, KristofferKreiss, Gunilla
Av organisasjonen
I samme tidsskrift
Journal of Scientific Computing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1060 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf