uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Analysis of boundary and interface closures for finite difference methods for the wave equation
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys.
2015 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

We consider high order finite difference methods for the wave equations in the second order form, where the finite difference operators satisfy the summation-by-parts principle. Boundary conditions and interface conditions are imposed weakly by the simultaneous-approximation-term method, and non-conforming grid interfaces are handled by an interface operator that is based on either interpolating directly between the grids or on projecting to piecewise continuous polynomials on an intermediate grid.

Stability and accuracy are two important aspects of a numerical method. For accuracy, we prove the convergence rate of the summation-by-parts finite difference schemes for the wave equation. Our approach is based on Laplace transforming the error equation in time, and analyzing the solution to the boundary system in the Laplace space. In contrast to first order equations, we have found that the determinant condition for the second order equation is less often satisfied for a stable numerical scheme. If the determinant condition is satisfied uniformly in the right half plane, two orders are recovered from the boundary truncation error; otherwise we perform a detailed analysis of the solution to the boundary system in the Laplace space to obtain an error estimate. Numerical experiments demonstrate that our analysis gives a sharp error estimate.

For stability, we study the numerical treatment of non-conforming grid interfaces. In particular, we have explored two interface operators: the interpolation operators and projection operators applied to the wave equation. A norm-compatible condition involving the interface operator and the norm related to the SBP operator is essential to prove stability by the energy method for first order equations. In the analysis, we have found that in contrast to first order equations, besides the norm-compatibility condition an extra condition must be imposed on the interface operators to prove stability by the energy method. Furthermore, accuracy and efficiency studies are carried out for the numerical schemes.

sted, utgiver, år, opplag, sider
Uppsala University, 2015.
Serie
IT licentiate theses / Uppsala University, Department of Information Technology, ISSN 1404-5117 ; 2015-005
HSV kategori
Forskningsprogram
Beräkningsvetenskap
Identifikatorer
URN: urn:nbn:se:uu:diva-264761OAI: oai:DiVA.org:uu-264761DiVA, id: diva2:861458
Veileder
Tilgjengelig fra: 2015-10-14 Laget: 2015-10-16 Sist oppdatert: 2017-08-31bibliografisk kontrollert
Delarbeid
1. Convergence of summation-by-parts finite difference methods for the wave equation
Åpne denne publikasjonen i ny fane eller vindu >>Convergence of summation-by-parts finite difference methods for the wave equation
2017 (engelsk)Inngår i: Journal of Scientific Computing, ISSN 0885-7474, E-ISSN 1573-7691, Vol. 71, s. 219-245Artikkel i tidsskrift (Fagfellevurdert) Published
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-264752 (URN)10.1007/s10915-016-0297-3 (DOI)000398062500009 ()
Tilgjengelig fra: 2016-09-27 Laget: 2015-10-16 Sist oppdatert: 2017-05-17bibliografisk kontrollert
2. High order finite difference methods for the wave equation with non-conforming grid interfaces
Åpne denne publikasjonen i ny fane eller vindu >>High order finite difference methods for the wave equation with non-conforming grid interfaces
2016 (engelsk)Inngår i: Journal of Scientific Computing, ISSN 0885-7474, E-ISSN 1573-7691, Vol. 68, s. 1002-1028Artikkel i tidsskrift (Fagfellevurdert) Published
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-264754 (URN)10.1007/s10915-016-0165-1 (DOI)000380693700006 ()
Eksternt samarbeid:
Tilgjengelig fra: 2016-01-27 Laget: 2015-10-16 Sist oppdatert: 2017-12-01bibliografisk kontrollert

Open Access i DiVA

fulltext(12073 kB)442 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 12073 kBChecksum SHA-512
c8ccbc5e70ce7c5f83682fcc24dd977dd70903e7ec2de5fb4e1f929b58d3c2b53c529066e6156a17a123589fb44ad62069403edf0954d93ef33c4e9931cb36fb
Type fulltextMimetype application/pdf

Personposter BETA

Wang, Siyang

Søk i DiVA

Av forfatter/redaktør
Wang, Siyang
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 442 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 691 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf