uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Prediction impact curve is a new measure integrating intervention effects in the evaluation of risk models
Emory Univ, Rollins Sch Publ Hlth, Dept Epidemiol, Atlanta, GA 30322 USA..
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper, Molekylär epidemiologi. Karolinska Inst, Dept Med Epidemiol & Biostat, SE-17177 Stockholm, Swedden..
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper, Molekylär epidemiologi.ORCID-id: 0000-0003-2256-6972
Emory Univ, Rollins Sch Publ Hlth, Dept Epidemiol, Atlanta, GA 30322 USA.;Vrije Univ Amsterdam Med Ctr, EMGO Inst Hlth & Care Res, Sect Community Genet, Dept Clin Genet, NL-1007 MB Amsterdam, Netherlands..
2016 (engelsk)Inngår i: Journal of Clinical Epidemiology, ISSN 0895-4356, E-ISSN 1878-5921, Vol. 69, s. 89-95Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

Objective: We propose a new measure of assessing the performance of risk models, the area under the prediction impact curve (auPIC), which quantifies the performance of risk models in terms of their average health impact in the population. Study Design and Setting: Using simulated data, we explain how the prediction impact curve (PIC) estimates the percentage of events prevented when a risk model is used to assign high-risk individuals to an intervention. We apply the PIC to the Atherosclerosis Risk in Communities (ARIC) Study to illustrate its application toward prevention of coronary heart disease. Results: We estimated that if the ARIC cohort received statins at baseline, 5% of events would be prevented when the risk model was evaluated at a cutoff threshold of 20% predicted risk compared to 1% when individuals were assigned to the intervention without the use of a model. By calculating the auPIC, we estimated that an average of 15% of events would be prevented when considering performance across the entire interval. Conclusion: We conclude that the PIC is a clinically meaningful measure for quantifying the expected health impact of risk models that supplements existing measures of model performance.

sted, utgiver, år, opplag, sider
2016. Vol. 69, s. 89-95
Emneord [en]
Prediction impact curve, AUC, Risk model, Predictive model, Coronary heart disease, Predictive ability
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-274427DOI: 10.1016/j.jclinepi.2015.06.011ISI: 000367127600012PubMedID: 26119889OAI: oai:DiVA.org:uu-274427DiVA, id: diva2:896527
Forskningsfinansiär
EU, FP7, Seventh Framework Programme, HEALTH-F4-2007-201413Swedish Research Council, 2012-1397Swedish Heart Lung Foundation, 20120197NIH (National Institute of Health), HHSN261201200425PEU, European Research Council, 310884Tilgjengelig fra: 2016-01-21 Laget: 2016-01-21 Sist oppdatert: 2018-01-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Ingelsson, Erik

Søk i DiVA

Av forfatter/redaktør
Ingelsson, Erik
Av organisasjonen
I samme tidsskrift
Journal of Clinical Epidemiology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 232 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf