uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Massive MIMO for decentralized estimation of a correlated source
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Signaler och System.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Signaler och System.
2016 (engelsk)Inngår i: IEEE Transactions on Signal Processing, ISSN 1053-587X, E-ISSN 1941-0476, Vol. 64, nr 10, s. 2499-2512Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We consider a decentralized multi-sensor estimation problem where L sensor nodes observe noisy versions of a correlated random source vector. The sensors amplify and forward their observations over a fading coherent multiple access channel (MAC) to a fusion center (FC). The FC is equipped with a large array of N antennas and adopts a minimum mean-square error (MMSE) approach for estimating the source. We optimize the amplification factor (or equivalently transmission power) at each sensor node in two different scenarios: a) with the objective of total power minimization subject to mean square error (MSE) of source estimation constraint, and b) with the objective of minimizing MSE subject to total power constraint. For this purpose, based on the well-known favorable propagation condition (when L << N) achieved in massive multiple-input multiple-output (MIMO), we apply an asymptotic approximation on the MSE and use convex optimization techniques to solve for the optimal sensor power allocation in a) and b). In a), we show that the total power consumption at the sensors decays as 1/N, replicating the power savings obtained in massive MIMO mobile communications literature. We also show several extensions of the aforementioned scenarios to the cases where sensor-to-FC fading channels are correlated, and channel coefficients are subject to estimation error. Through numerical studies, we also illustrate the superiority of the proposed optimal power allocation methods over uniform power allocation.

sted, utgiver, år, opplag, sider
2016. Vol. 64, nr 10, s. 2499-2512
Emneord [en]
Decentralized estimation; wireless sensor networks; massive MIMO; coherent MAC; convex optimization; power allocation
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-287944DOI: 10.1109/TSP.2016.2523459ISI: 000374888900004OAI: oai:DiVA.org:uu-287944DiVA, id: diva2:923624
Tilgjengelig fra: 2016-04-27 Laget: 2016-04-27 Sist oppdatert: 2018-11-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Shirazinia, AmirpashaDey, Subhrakanti

Søk i DiVA

Av forfatter/redaktør
Shirazinia, AmirpashaDey, Subhrakanti
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Signal Processing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 318 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf