uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Lagrangian exotic spheres
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Algebra och geometri.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Algebra och geometri.ORCID-id: 0000-0003-2618-5712
Univ Cambridge, Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WB, England.
2016 (engelsk)Inngår i: Journal of Topology and Analysis, Vol. 8, nr 3, s. 375-397Artikkel i tidsskrift (Fagfellevurdert) Published
Resurstyp
Text
Abstract [en]

Let k > 2. We prove that the cotangent bundles T*Sigma and T*Sigma' of oriented homotopy (2k -1)-spheres Sigma and Sigma' are symplectomorphic only if [Sigma] = [+/-Sigma'] is an element of Theta(2k-1)/bP(2k), where Theta(2k-1) denotes the group of oriented homotopy (2k -1)-spheres under connected sum, bP(2k) denotes the subgroup of those that bound a parallelizable 2k-manifold, and where -Sigma denotes Sigma with orientation reversed. We further show that if n = 4k -1 and RPn#Sigma admits a Lagrangian embedding in CPn, then [Sigma#Sigma] is an element of bP(4k). The proofs build on [1] and [18] in combination with a new cut-and-paste argument; that also yields some interesting explicit exact Lagrangian embeddings, for instance of the sphere S-n into the plumbing T*Sigma(n)#T-pl*Sigma(n) of cotangent bundles of certain exotic spheres. As another application, we show that there are re-parametrizations of the zero-section in the cotangent bundle of a sphere that are not Hamiltonian isotopic (as maps rather than as submanifolds) to the original zero-section.

sted, utgiver, år, opplag, sider
2016. Vol. 8, nr 3, s. 375-397
Emneord [en]
Symplectic manifold; Lagrangian submanifold; floer theory; exotic sphere
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-289152DOI: 10.1142/S1793525316500199ISI: 000378644000001OAI: oai:DiVA.org:uu-289152DiVA, id: diva2:924788
Forskningsfinansiär
Knut and Alice Wallenberg FoundationSwedish Research Council, 2012-2365Tilgjengelig fra: 2016-04-29 Laget: 2016-04-29 Sist oppdatert: 2016-08-02bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Ekholm, TobiasKragh, Thomas

Søk i DiVA

Av forfatter/redaktør
Ekholm, TobiasKragh, Thomas
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 583 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf