uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Expanding the (Cross-)Hyperconjugation of 1,4-Disilacyclohexa-2,5-dienes to Larger Monomers and Oligomers: A Computational Investigation
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik.
2016 (engelsk)Inngår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 6, nr 43, s. 36961-36970Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We used density functional theory calculations to examine molecules that can be regarded as expanded 1,4-disilacyclohexa-2,5-dienes as well as oligomers based on these or 1,4-disilacyclohexa-2,5-diene with the aim to identify systems with extended (cross-)hyperconjugation. Among the three "expanded 1,4-disilacyclohexa-2,5-dienes" considered cyclobutadisilole is the most interesting as it has a higher thermodynamic stability than the isomeric 1,6-disilacyclodeca-2,3,4,7,8,9-hexaene and significantly lower first electronic excitation energy than 1,6-disilacyclodeca-2,4,7,9-tetraene. Cyclobutadisilole with trimethylsilyl substituents at Si shows particularly low excitations with the first strong transition at 3.46 eV (358 nm), i.e., similar to 1.1 eV lower than in 1,4-disilacyclohexa-2,5-diene. The monomers were connected into oligomers via their Si atoms using bis(dimethylsilanediyl) linkers, and some extended hyperconjugation was revealed. The first allowed UV/Vis excitation in the cyclobutadisilole-based tetramers is calculated at 2.57 eV (482 nm), although the lowering in excitation energies when going from monomer to tetramer is merely similar to 0.5 eV and hyperconjugation has modest impact on geometries. Yet, the tetra(cyclobutadisilole) has a significantly lower first allowed excitation when compared to a previously studied tetra(1,4-disilacyclohexadiene) with first excitation at 3.9 eV (318 nm).

sted, utgiver, år, opplag, sider
2016. Vol. 6, nr 43, s. 36961-36970
HSV kategori
Forskningsprogram
Kemi med inriktning mot organisk kemi
Identifikatorer
URN: urn:nbn:se:uu:diva-293564DOI: 10.1039/C6RA02732FISI: 000374561300088OAI: oai:DiVA.org:uu-293564DiVA, id: diva2:927980
Forskningsfinansiär
Swedish Research CouncilTilgjengelig fra: 2016-05-13 Laget: 2016-05-13 Sist oppdatert: 2017-12-12bibliografisk kontrollert
Inngår i avhandling
1. Hyperconjugation in Group 14 Organic Compounds: Design and Property Investigations
Åpne denne publikasjonen i ny fane eller vindu >>Hyperconjugation in Group 14 Organic Compounds: Design and Property Investigations
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Nowadays π-conjugated molecules are widely used as materials for devices in organic and molecular electronics. This is due to the ability of such molecules to conduct electricity. However, π-conjugation leads to molecular rigidness and associated lower solubility, which limits possible applications. Meanwhile, there are other types of conjugation that do not cause molecular rigidness but still provide conductivity. One of them is so called hyperconjugation. While π-conjugation involves only p atomic orbitals, hyperconjugation is characterized by interaction of π and σ orbitals. Hyperconjugation is normally weaker than π-conjugation, thus, in order to get strongly hyperconjugated molecules they should be enhanced in some way.

In this thesis, I describe methods for design of strongly hyperconjugated molecules. It is possible to increase the strength of hyperconjugation by various methods and some of them are discussed. We performed quantum chemical calculations in order to investigate optical and geometric properties of the hyperconjugated molecules and evaluate the relative strength of hyperconjugation. In some cases, results of calculations were compared with experimental results aiming to confirm the relevance of the calculations. First, we have investigated how the change of group 14 elements in the 1,4-ditetrelocyclohexa-2,5-dienes influence the hyperconjugation strength. Next, the substituent effect was considered in fulvenes and their hyperconjugated analogs. We showed this effect from the perspective of the substituents influence on the aromatic properties of molecules in the ground and first electronically excited states. Further, the gradual shift when going from monomer to oligomers were investigated. For this hyperconjugated oligomers were constructed from 1,4-disilacyclohexa-2,5-diene and cyclobutadisilole fragments. Additionally we showed the influence of electron withdrawing and electron donating groups on hyperconjugation in siloles and 1,4-disilacyclohexa-2,5-dienes. Finally, hyperconjugation was investigated in a set of silicon-containing omni-hyperconjugated compounds.

The results obtained from this research showed that hyperconjugation strength can be increased significantly up to levels comparable to purely π-conjugated molecules. We hope that these results will be useful in development of other hyperconjugated small molecules, oligomers, and polymers, which can be further used as material for electronic devices.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2017. s. 61
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1613
Emneord
1, 4-disilacyclohexa-2, 5-diene, aromaticity, computational chemistry, conjugation, cross-hyperconjugation, hyperconjugation, group 14 elements, organosilicon chemistry, silole
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-336192 (URN)978-91-513-0190-7 (ISBN)
Disputas
2018-02-09, Häggsalen, Ångström laboratory, Lägerhyddsvägen 1, Uppsala, 09:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2018-01-19 Laget: 2017-12-12 Sist oppdatert: 2018-03-07

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Denisova, AleksandraEmanuelsson, RikardOttosson, Henrik

Søk i DiVA

Av forfatter/redaktør
Denisova, AleksandraEmanuelsson, RikardOttosson, Henrik
Av organisasjonen
I samme tidsskrift
RSC Advances

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 874 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf