uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On network topology reconfiguration for remote state estimation
Univ Paderborn, Dept Elect Engn EIM E, D-33098 Paderborn, Germany.
Univ Paderborn, Dept Elect Engn EIM E, D-33098 Paderborn, Germany.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Signaler och System.
Royal Inst Technol, ACCESS Linnaeus Ctr, Sch Elect Engn, S-10044 Stockholm, Sweden.
2016 (engelsk)Inngår i: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 61, nr 12, s. 3842-3856Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper, we investigate network topology reconfiguration in wireless sensor networks for remote state estimation, where sensor observations are transmitted, possibly via intermediate sensors, to a central gateway/estimator. The time-varying wireless network environment is modelled by the notion of a network state process, which is a randomly time-varying semi-Markov chain and determines the packet reception probabilities of links at different times. For each network state, different network configurations can be used, which govern the network topology and routing of packets. The problem addressed is to determine the optimal network configuration to use in each network state, in order to minimize an expected error covariance measure. Computation of the expected error covariance cost function has a complexity of O(2(M Delta max)), where M is the number of sensors and Delta max is the maximum time between transitions of the semi-Markov chain. A sub-optimal method which minimizes the upper bound of the expected error covariance, that can be computed with a reduced complexity of O(2(M)), is proposed, which in many cases gives identical results to the optimal method. Conditions for estimator stability under both the optimal and suboptimal reconfiguration methods are derived using stochastic Lyapunov functions. Numerical results and comparisons with other low complexity approaches demonstrate the performance benefits of our approach.

sted, utgiver, år, opplag, sider
2016. Vol. 61, nr 12, s. 3842-3856
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-302632DOI: 10.1109/TAC.2016.2527788ISI: 000389891100010OAI: oai:DiVA.org:uu-302632DiVA, id: diva2:961290
Forskningsfinansiär
Australian Research Council, DE120102012Tilgjengelig fra: 2016-09-07 Laget: 2016-09-07 Sist oppdatert: 2017-11-21bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Ahlén, Anders
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Automatic Control

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 284 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf