uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Real-time data stream clustering over sliding windows
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för datalogi. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datalogi. (Uppsala Database laboratory)
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

In many applications, e.g. urban traffic monitoring, stock trading, and industrial sensor data monitoring, clustering algorithms are applied on data streams in real-time to find current patterns. Here, sliding windows are commonly used as they capture concept drift.

Real-time clustering over sliding windows is early detection of continuously evolving clusters as soon as they occur in the stream, which requires efficient maintenance of cluster memberships that change as windows slide.

Data stream management systems (DSMSs) provide high-level query languages for searching and analyzing streaming data. In this thesis we extend a DSMS with a real-time data stream clustering framework called Generic 2-phase Continuous Summarization framework (G2CS).  G2CS modularizes data stream clustering by taking as input clustering algorithms which are expressed in terms of a number of functions and indexing structures. G2CS supports real-time clustering by efficient window sliding mechanism and algorithm transparent indexing. A particular challenge for real-time detection of a high number of rapidly evolving clusters is efficiency of window slides for clustering algorithms where deletion of expired data is not supported, e.g. BIRCH. To that end, G2CS includes a novel window maintenance mechanism called Sliding Binary Merge (SBM). To further improve real-time sliding performance, G2CS uses generation-based multi-dimensional indexing where indexing structures suitable for the clustering algorithms can be plugged-in.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2016. , s. 33
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1431
Emneord [en]
Data streaming; Sliding windows; Clustering;
HSV kategori
Forskningsprogram
Datavetenskap med inriktning mot databasteknik
Identifikatorer
URN: urn:nbn:se:uu:diva-302799ISBN: 978-91-554-9698-2 (tryckt)OAI: oai:DiVA.org:uu-302799DiVA, id: diva2:967686
Disputas
2016-11-23, ITC 2446, Lägerhyddsvägen 2, Uppsala, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2016-11-02 Laget: 2016-09-09 Sist oppdatert: 2016-11-16
Delarbeid
1. Scalable ordered indexing of streaming data
Åpne denne publikasjonen i ny fane eller vindu >>Scalable ordered indexing of streaming data
2012 (engelsk)Inngår i: 3rd International Workshop on Accelerating Data Management Systems using Modern Processor and Storage Architectures, 2012, s. 11-Konferansepaper, Publicerat paper (Fagfellevurdert)
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-185068 (URN)
Konferanse
ADMS 2012, Istanbul, Turkey
Prosjekter
eSSENCE
Tilgjengelig fra: 2012-08-27 Laget: 2012-11-19 Sist oppdatert: 2018-01-12bibliografisk kontrollert
2. Grand challenge: Implementation by frequently emitting parallel windows and user-defined aggregate functions
Åpne denne publikasjonen i ny fane eller vindu >>Grand challenge: Implementation by frequently emitting parallel windows and user-defined aggregate functions
Vise andre…
2013 (engelsk)Inngår i: Proc. 7th ACM International Conference on Distributed Event-Based Systems, New York: ACM Press, 2013, s. 325-330Konferansepaper, Publicerat paper (Fagfellevurdert)
sted, utgiver, år, opplag, sider
New York: ACM Press, 2013
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-211954 (URN)10.1145/2488222.2488284 (DOI)978-1-4503-1758-0 (ISBN)
Eksternt samarbeid:
Konferanse
DEBS 2013
Tilgjengelig fra: 2013-06-29 Laget: 2013-12-03 Sist oppdatert: 2018-01-11bibliografisk kontrollert
3. Distributed multi-query optimization of continuous clustering queries
Åpne denne publikasjonen i ny fane eller vindu >>Distributed multi-query optimization of continuous clustering queries
2014 (engelsk)Inngår i: Proc. VLDB 2014 PhD Workshop, 2014Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This work addresses the problem of sharing execution plans for queries that continuously cluster streaming data to provide an evolving summary of the data stream. This is challenging since clustering is an expensive task, there might be many clustering queries running simultaneously, each continuous query has a long life time span, and the execution plans often overlap. Clustering is similar to conventional grouped aggregation but cluster formation is more expensive than group formation, which makes incremental maintenance more challenging. The goal of this work is to minimize response time of continuous clustering queries with limited resources through multi-query optimization. To that end, strategies for sharing execution plans between continuous clustering queries are investigated and the architecture of a system is outlined that optimizes the processing of multiple such queries. Since there are many clustering algorithms, the system should be extensible to easily incorporate user defined clustering algorithms.

HSV kategori
Forskningsprogram
Datavetenskap med inriktning mot databasteknik
Identifikatorer
urn:nbn:se:uu:diva-302790 (URN)
Eksternt samarbeid:
Konferanse
VLDB 2014
Tilgjengelig fra: 2016-09-09 Laget: 2016-09-09 Sist oppdatert: 2018-01-10bibliografisk kontrollert
4. Framework for real-time clustering over sliding windows
Åpne denne publikasjonen i ny fane eller vindu >>Framework for real-time clustering over sliding windows
2016 (engelsk)Inngår i: Proc. 28th International Conference on Scientific and Statistical Database Management, New York: ACM Press, 2016, s. 1-13, artikkel-id 19Konferansepaper, Publicerat paper (Fagfellevurdert)
sted, utgiver, år, opplag, sider
New York: ACM Press, 2016
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-302792 (URN)10.1145/2949689.2949696 (DOI)978-1-4503-4215-5 (ISBN)
Eksternt samarbeid:
Konferanse
SSDBM 2016
Tilgjengelig fra: 2016-07-18 Laget: 2016-09-09 Sist oppdatert: 2018-01-10bibliografisk kontrollert

Open Access i DiVA

fulltext(677 kB)427 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 677 kBChecksum SHA-512
ff233b0ffb4ccaac879cf18e285ec5a8ba33df5e043c33c19e217f16aa9901dc5e1481dc845900cc4021e99856dad8b55e9ff5731d5067ac7eb4d750dcd07262
Type fulltextMimetype application/pdf
Kjøp publikasjonen >>

Søk i DiVA

Av forfatter/redaktør
Badiozamany, Sobhan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 427 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 1441 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf