uu.seUppsala universitets publikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Parametric methods for frequency-selective MR spectroscopy - a review
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Reglerteknik. Systems and Control.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Reglerteknik. Systems and Control.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Reglerteknik. Systems and Control.ORCID-id: 0000-0002-7957-3711
2004 (engelsk)Inngår i: Journal of Magnetic Resonance, Vol. 168, nr 2, s. 259-272Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Accurate quantitation of the spectral components in a pre-selected frequency band for magnetic resonance spectroscopy (MRS) signals is a frequently addressed problem in the MR community. One obvious application for such a frequency-selective technique is to lower the computational burden in situations when the measured data sequence contains too many samples to be processed using a standard full-spectrum method. Among the frequency-selective methods previously proposed in the literature, only a few possess the two features of primary concern: high robustness against interferences from out-of-band components and low computational complexity. In this survey paper we consider five spectral analysis methods which can be used for MRS signal parameter estimation in a selected frequency band. We re-derive the filter diagonalization method (FDM) in a new way that allows an easy comparison to the other methods presented. Then we introduce a frequency-selective version of the method of direction estimation (MODE) which has not been applied to MR-spectroscopy before. In addition, we present a filtering and decimation technique using a maximum phase bandpass FIR-filter and relate it to a similar ARMA-modeling approach known as SB-HOYWSVD (sub-band high-order Yule-Walker singular value decomposition). Finally, we study the numerical performances of these four methods and compare them to that of the recently introduced SELF-SVD (Singular Value Decomposition-based method usable in a SELected Frequency band) in several examples using simulated MR data, and discuss the benefits and disadvantages of each technique.

sted, utgiver, år, opplag, sider
2004. Vol. 168, nr 2, s. 259-272
Identifikatorer
URN: urn:nbn:se:uu:diva-70358OAI: oai:DiVA.org:uu-70358DiVA, id: diva2:98269
Tilgjengelig fra: 2005-05-04 Laget: 2005-05-04 Sist oppdatert: 2018-10-01

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Sandgren, NiclasSelén, YngveStoica, Peter

Søk i DiVA

Av forfatter/redaktør
Sandgren, NiclasSelén, YngveStoica, Peter
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 394 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf