Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The Art of Modelling Oscillations and Feedback across Biological Scales
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen.ORCID-id: 0000-0002-8745-4480
2024 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Fritextbeskrivning
Abstract [en]

This thesis consists of four papers in the field of mathematical biology. All papers aim to advance our understanding of biological systems through the development and application of innovative mathematical models. These models cover a diverse range of biological scales, from the nuclei of unicellular organisms to the collective behaviours of animal populations, showcasing the broad applicability and potential of mathematical approaches in biology. While the first three papers study mathematical models of very different applications and at various scales, all models contribute to the understanding of how oscillations and/or feedback mechanisms on the individual level give rise to complex emergent patterns on the collective level. In Paper I, we propose a mathematical model of basal cognition, inspired by the true slime mould, Physarum polycephalum. The model demonstrates how a combination of oscillatory and current-based reinforcement processes can be used to couple resources in an efficient manner. In Paper II, we propose a model of social burst-and-glide motion in pairs of swimming fish by combining a well-studied model of neuronal dynamics, the FitzHugh-Nagumo model, with a model of fish motion. Our model, in which visual stimuli of the position of the other fish affect the internal burst or glide state of the fish, captures a rich set of swimming dynamics found in many species of fish. In Paper III, we study a class of spatially explicit individual-based models with contest competition. Based on measures of the spatial statistics, we develop two new approximate descriptions of the spatial population dynamics. Paper IV takes a reflective turn, advocating from a philosophical perspective the importance of developing new mathematical models in the face of current scientific challenges.

Ort, förlag, år, upplaga, sidor
Uppsala: Department of Mathematics, 2024. , s. 48
Serie
Uppsala Dissertations in Mathematics, ISSN 1401-2049 ; 135
Nyckelord [en]
mathematical biology, mathematical modelling, oscillations, feedback mechanisms, dynamical systems, individual-based models, complex systems
Nationell ämneskategori
Matematik
Forskningsämne
Tillämpad matematik och statistik
Identifikatorer
URN: urn:nbn:se:uu:diva-523639ISBN: 978-91-506-3039-8 (tryckt)OAI: oai:DiVA.org:uu-523639DiVA, id: diva2:1839681
Disputation
2024-04-12, Sonja Lyttkens (101121), Ångströmlaboratoriet, Uppsala, 09:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2024-03-19 Skapad: 2024-02-21 Senast uppdaterad: 2024-03-19
Delarbeten
1. A minimal model of cognition based on oscillatory and reinforcement processes
Öppna denna publikation i ny flik eller fönster >>A minimal model of cognition based on oscillatory and reinforcement processes
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Building mathematical models of brains is difficult because of the sheer complexity of the problem. One potential approach is to start by identifying models of basal cognition, which give an abstract representation of a range organisms without central nervous systems, including fungi, slime moulds and bacteria. We propose one such model, demonstrating how a combination of oscillatory and current-based reinforcement processes can be used to couple resources in an efficient manner. We first show that our model connects resources in an efficient manner when the environment is constant. We then show that in an oscillatory environment our model builds efficient solutions, provided the environmental oscillations are sufficiently out of phase. We show that amplitude differences can promote efficient solutions and that the system is robust to frequency differences. We identify connections between our model and basal cognition in biological systems and slime moulds, in particular, showing how oscillatory and problem-solving properties of these systems are captured by our model.

Nationell ämneskategori
Annan matematik
Forskningsämne
Matematik med inriktning mot tillämpad matematik
Identifikatorer
urn:nbn:se:uu:diva-523413 (URN)
Tillgänglig från: 2024-02-18 Skapad: 2024-02-18 Senast uppdaterad: 2024-04-15Bibliografiskt granskad
2. Using neuronal models to capture burst-and-glide motion and leadership in fish
Öppna denna publikation i ny flik eller fönster >>Using neuronal models to capture burst-and-glide motion and leadership in fish
2023 (Engelska)Ingår i: Journal of the Royal Society Interface, ISSN 1742-5689, E-ISSN 1742-5662, Vol. 20, nr 204Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

While mathematical models, in particular self-propelled particle models, capture many properties of large fish schools, they do not always capture the interactions of smaller shoals. Nor do these models tend to account for the use of intermittent locomotion, often referred to as burst-and-glide, by many species. In this paper, we propose a model of social burst-and-glide motion by combining a well-studied model of neuronal dynamics, the FitzHugh-Nagumo model, with a model of fish motion. We first show that our model can capture the motion of a single fish swimming down a channel. Extending to a two-fish model, where visual stimulus of a neighbour affects the internal burst or glide state of the fish, we observe a rich set of dynamics found in many species. These include: leader-follower behaviour; periodic changes in leadership; apparently random (i.e. chaotic) leadership change; and tit-for-tat turn taking. Moreover, unlike previous studies where a randomness is required for leadership switching to occur, we show that this can instead be the result of deterministic interactions. We give several empirically testable predictions for how bursting fish interact and discuss our results in light of recently established correlations between fish locomotion and brain activity.

Ort, förlag, år, upplaga, sidor
The Royal Society, 2023
Nyckelord
collective behaviour, swimming dynamics, neuronal dynamics, dynamical systems, fish behaviour
Nationell ämneskategori
Bioinformatik (beräkningsbiologi)
Identifikatorer
urn:nbn:se:uu:diva-508872 (URN)10.1098/rsif.2023.0212 (DOI)001030842300005 ()37464800 (PubMedID)
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, 102 2013.0072EU, Horisont 2020, 101030688Norges forskningsråd, 262762
Tillgänglig från: 2023-08-11 Skapad: 2023-08-11 Senast uppdaterad: 2024-02-21Bibliografiskt granskad
3. Finding analytical approximations for discrete, stochastic, individual-based models of ecology
Öppna denna publikation i ny flik eller fönster >>Finding analytical approximations for discrete, stochastic, individual-based models of ecology
2023 (Engelska)Ingår i: Mathematical Biosciences, ISSN 0025-5564, E-ISSN 1879-3134, Vol. 365Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Discrete time, spatially extended models play an important role in ecology, modelling population dynamics of species ranging from micro-organisms to birds. An important question is how ’bottom up’, individual-based models can be approximated by ’top down’ models of dynamics. Here, we study a class of spatially explicit individual-based models with contest competition: where species compete for space in local cells and then disperse to nearby cells. We start by describing simulations of the model, which exhibit large-scale discrete oscillations and characterize these oscillations by measuring spatial correlations. We then develop two new approximate descriptions of the resulting spatial population dynamics. The first is based on local interactions of the individuals and allows us to give a difference equation approximation of the system over small dispersal distances. The second approximates the long-range interactions of the individual-based model. These approximations capture demographic stochasticity from the individual-based model and show that dispersal stabilizes population dynamics. We calculate extinction probability for the individual-based model and show convergence between the local approximation and the non-spatial global approximation of the individual-based model as dispersal distance and population size simultaneously tend to infinity. Our results provide new approximate analytical descriptions of a complex bottom-up model and deepen understanding of spatial population dynamics.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023
Nationell ämneskategori
Beräkningsmatematik Annan matematik Sannolikhetsteori och statistik
Forskningsämne
Matematik med inriktning mot tillämpad matematik
Identifikatorer
urn:nbn:se:uu:diva-455245 (URN)10.1016/j.mbs.2023.109084 (DOI)001103942100001 ()
Tillgänglig från: 2021-10-05 Skapad: 2021-10-05 Senast uppdaterad: 2024-02-21Bibliografiskt granskad
4. The lost art of mathematical modelling
Öppna denna publikation i ny flik eller fönster >>The lost art of mathematical modelling
2023 (Engelska)Ingår i: Mathematical Biosciences, ISSN 0025-5564, E-ISSN 1879-3134, Vol. 362, artikel-id 109033Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We provide a critique of mathematical biology in light of rapid developments in modern machine learning. We argue that out of the three modelling activities - (1) formulating models; (2) analysing models; and (3) fitting or comparing models to data - inherent to mathematical biology, researchers currently focus too much on activity (2) at the cost of (1). This trend, we propose, can be reversed by realising that any given biological phenomenon can be modelled in an infinite number of different ways, through the adoption of a pluralistic approach, where we view a system from multiple, different points of view. We explain this pluralistic approach using fish locomotion as a case study and illustrate some of the pitfalls - universalism, creating models of models, etc. - that hinder mathematical biology. We then ask how we might rediscover a lost art: that of creative mathematical modelling.

Ort, förlag, år, upplaga, sidor
Elsevier BV, 2023
Nyckelord
Mathematical biology, Hybrid models, Critical complexity, Machine learning, Equation-free approaches
Nationell ämneskategori
Annan matematik
Identifikatorer
urn:nbn:se:uu:diva-509274 (URN)10.1016/j.mbs.2023.109033 (DOI)001038884800001 ()37257641 (PubMedID)
Tillgänglig från: 2023-08-23 Skapad: 2023-08-23 Senast uppdaterad: 2024-02-21Bibliografiskt granskad

Open Access i DiVA

UUThesis_L-Gyllingberg-2024(1372 kB)242 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1372 kBChecksumma SHA-512
5efedc2cb3774588c6200c692e729e36cf903f9bd3a1d3d4ea7bd39cfc5ca90579046068900cba1cb4bee1613d60bd29f51b43eec4eead27564c0a70caac5ace
Typ fulltextMimetyp application/pdf

Person

Gyllingberg, Linnéa

Sök vidare i DiVA

Av författaren/redaktören
Gyllingberg, Linnéa
Av organisationen
Matematiska institutionen
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 242 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 1067 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf