uu.seUppsala universitets publikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Adjoint of a median-dual finite-volume scheme: Application to transonic aerodynamic shape optimization
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för teknisk databehandling. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys. (Waves and Fluids)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för teknisk databehandling. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Numerisk analys. (Waves and Fluids)
2006 (Engelska)Rapport (Övrigt vetenskapligt)
Ort, förlag, år, upplaga, sidor
2006.
Serie
Technical report / Department of Information Technology, Uppsala University, ISSN 1404-3203 ; 2006-013
Nationell ämneskategori
Beräkningsmatematik Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:uu:diva-80174OAI: oai:DiVA.org:uu-80174DiVA, id: diva2:108088
Projekt
Design OptimizationTillgänglig från: 2007-09-16 Skapad: 2007-09-16 Senast uppdaterad: 2018-01-13Bibliografiskt granskad
Ingår i avhandling
1. Numerical Methods for Aerodynamic Shape Optimization
Öppna denna publikation i ny flik eller fönster >>Numerical Methods for Aerodynamic Shape Optimization
2005 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Gradient-based aerodynamic shape optimization, based on Computational Fluid Dynamics analysis of the flow, is a method that can automatically improve designs of aircraft components. The prospect is to reduce a cost function that reflects aerodynamic performances.

When the shape is described by a large number of parameters, the calculation of one gradient of the cost function is only feasible by recourse to techniques that are derived from the theory of optimal control. In order to obtain the best computational efficiency, the so called adjoint method is applied here on the complete mapping, from the parameters of design to the values of the cost function. The mapping considered here includes the Euler equations for compressible flow discretized on unstructured meshes by a median-dual finite-volume scheme, the primal-to-dual mesh transformation, the mesh deformation, and the parameterization. The results of the present research concern the detailed derivations of expressions, equations, and algorithms that are necessary to calculate the gradient of the cost function. The discrete adjoint of the Euler equations and the exact dual-to-primal transformation of the gradient have been implemented for 2D and 3D applications in the code Edge, a program of Computational Fluid Dynamics used by Swedish industries.

Moreover, techniques are proposed here in the aim to further reduce the computational cost of aerodynamic shape optimization. For instance, an interpolation scheme is derived based on Radial Basis Functions that can execute the deformation of unstructured meshes faster than methods based on an elliptic equation.

In order to improve the accuracy of the shape, obtained by numerical optimization, a moving mesh adaptation scheme is realized based on a variable diffusivity equation of Winslow type. This adaptation has been successfully applied on a simple case of shape optimization involving a supersonic flow. An interpolation technique has been derived based on a mollifier in order to improve the convergence of the coupled mesh-flow equations entering the adaptive scheme.

The method of adjoint derived here has also been applied successfully when coupling the Euler equations with the boundary-layer and parabolized stability equations, with the aim to delay the laminar-to-turbulent transition of the flow. The delay of transition is an efficient way to reduce the drag due to viscosity at high Reynolds numbers.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2005. s. 34
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 135
Nyckelord
Computational Fluid Dynamics, shape optimization, adjoint equations, edge-based finite-volume method, moving mesh adaptation, radial basis functions, inviscid compressible flow, transition control
Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
Numerisk analys
Identifikatorer
urn:nbn:se:uu:diva-6252 (URN)91-554-6431-9 (ISBN)
Disputation
2006-01-20, Room 2446, Polacksbacken, Lägerhyddsvägen 2D, Uppsala, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2005-12-28 Skapad: 2005-12-28 Senast uppdaterad: 2014-09-03Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

http://www.it.uu.se/research/publications/reports/2006-013/

Personposter BETA

Amoignon, OlivierBerggren, Martin

Sök vidare i DiVA

Av författaren/redaktören
Amoignon, OlivierBerggren, Martin
Av organisationen
Avdelningen för teknisk databehandlingNumerisk analys
BeräkningsmatematikDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 934 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf